

Independent Events

 Definition 1:Events A and B are independent iff

$$
\operatorname{Pr}[A]=\operatorname{Pr}[A \mid B]
$$

Definition 2:

Events A and B are independent iff

$$
\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]=\operatorname{Pr}[A \cap B]
$$

(1)(2)(O) Albert R Meyer, May 3, 2013
Independence
$\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]=\operatorname{Pr}[A \cap B]$
symmetric in A and B so,
A independent of B iff
B independent of A
Independence
Corollary: If $\operatorname{Pr}[\mathrm{B}]=0$, then
B is independent of every
event - even itself.
Independence
Corollary: If $\operatorname{Pr}[B]=0$, then
B is independent of every
event
Independence
A independent of B
means
Independence
A independent of B
means A is independent of
whether or not B occurs:

Independence
A independent of B iff
A independent of \bar{B}
Simple proof using:
$\operatorname{Pr}[A-B]=\operatorname{Pr}[A]-\operatorname{Pr}[A \cap B]$

