

Conditional Probability: A Fair Die

$$
\operatorname{Pr}[\text { roll } 1]=\frac{|\{1\}|}{|\{1,2,3,4,5,6\}|}=\frac{1}{6}
$$

"knowledge" changes probabilities:
Pr[roll 1 knowing rolled odd]

$$
=\frac{|\{1\}|}{|\{1,3,5\}|}=\frac{1}{3}
$$

$$
\begin{aligned}
& \text { Conditional Probability } \\
& \text { We were reasoning about } \\
& \text { conditional probability in } \\
& \text { the way we defined our } \\
& \text { probability spaces in the } \\
& \text { first place. } \\
& \text { We were using: }
\end{aligned}
$$

Conditional Probability
In fact, we use this reasoning to define conditional probability:

Product Rule

$$
\begin{gathered}
\operatorname{Pr}[A \cap B]= \\
\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]
\end{gathered}
$$

©($1 \times(1)$
Albert R Meyer,
May 3, 2013

Conditional Probability $\operatorname{Pr}[B \mid A]$ is the probability of event B, given that event A has occurred:

$$
\operatorname{Pr}[B \mid A]::=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]}
$$

Product Rule for 3
 $\operatorname{Pr}[A \cap B \cap C]=$ $\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]$ $\cdot \operatorname{Pr}[C \mid A \cap B]$
 Albert R Meyer, May 3, 2013
 condprob. 11

Conditioning Defines a New Space Conditioning on A defines a new probability function Pr_{A} where outcomes not in A are assigned probability zero
bert R Meyer,
May 3, 2013

Conditioning Defines a New Space Conditioning on A defines a new probability function Pr_{A} where outcomes not in A are assigned probability zero, and outcomes in A have their problems raised in proportion to A.

Conditioning Defines a New Space Conditioning on A defines a new probability function Pr_{A} where

Conditioning Defines a New Space
probability function Pr_{A} where
$\operatorname{Pr}_{A}[\omega]::=0 \quad$ if $\omega \notin A$,
$::=\frac{\operatorname{Pr}[\omega]}{\operatorname{Pr}[A]} \quad$ if $\omega \in A$.
Conditioning on A defines a new
Alerr mere.

[^0]
[^0]: Conditioning Defines a New Space
 Now

 $$
 { }^{v} \operatorname{Pr}[B \mid A]=\operatorname{Pr}_{A}[B] .
 $$

 This implies conditional probability obeys all the rules, for example

 Conditional Difference Rule

 $$
 \begin{aligned}
 & \operatorname{Pr}[B-C \mid A]= \\
 & \quad \operatorname{Pr}[B \mid A]-\operatorname{Pr}[B \cap C \mid A]
 \end{aligned}
 $$

 (1) (1) (®)

 Albert R Meyer,
 condprob. 16

