Mathematics for Computer Science MIT 6.042J/18.062J

## Probabilistic Diagnosis

䁾: A great-sounding diagnostic test for TB:
@(8)(2) Albert R Meyer, May 3, 2013 bayes. 2

```
9%%% accurate TB testing
A great-sounding diagnostic test for TB: if you have TB the test is guaranteed to detect it. If you don't have TB, the test says so \(99 \%\) of the time. Your doctor gives you the test, and it says you have TB!
```

99\% accurate TB testing test says TB! TB is a serious disease and the test is at least $99 \%$ accurate. How worried should you be? What is the probability that you actually have TB?


```
    What is the probability that
    you have TB given that a
    99% accurate says you do?
    Pr[TB| + ]=?
    "+" for [test positive]
Albert R Meyer, May 3,2013
Do you have TB?
\(\operatorname{Pr}[\mathrm{TB} \mid+]=\frac{\operatorname{Pr}[\mathrm{TB} \text { AND }+]}{\operatorname{Pr}[+]}\)
\(=1\)
\[
=\frac{\operatorname{Pr}[+\mid \mathrm{TB}] \cdot \operatorname{Pr}[\mathrm{TB}]}{\operatorname{Pr}[+]}
\]
\begin{tabular}{rl} 
Do you have TB? \\
\(\operatorname{Pr}[T B \mid+]\) & \(=\frac{\operatorname{Pr}[T B \text { AND }+]}{\operatorname{Pr}[+]}\) \\
& \(=\frac{\operatorname{Pr}[T B]}{\operatorname{Pr}[+]}\)
\end{tabular}



\footnotetext{

\(\operatorname{Pr}[+]=\operatorname{Pr}[+\mid T B] \cdot \operatorname{Pr}[T B]\)
\(+\operatorname{Pr}[+\mid\) not TB] \(\cdot \operatorname{Pr}[\) not TB]
\(=\frac{99}{100} \operatorname{Pr}[T B]+\frac{1}{100}\)
}

Do you have TB?
\begin{tabular}{rl}
\(\operatorname{Pr}[T B \mid+]\) & \(=\frac{\operatorname{Pr}[T B]}{\operatorname{Pr}[+]}\) \\
& \(=\frac{\operatorname{Pr}[T B]}{\frac{99}{100} \operatorname{Pr}[T B]+\frac{1}{100}}\)
\end{tabular}
(and
\[
\begin{aligned}
& \text { Do you have TB? } \\
& \begin{aligned}
& \operatorname{Pr}[\mathrm{TB} \mid+]=\frac{\operatorname{Pr}[\mathrm{TB}]}{\operatorname{Pr}[+]} \\
&=\frac{100 \operatorname{Pr}[\mathrm{~TB}]}{99 \operatorname{Pr}[\mathrm{~TB}]-1} \\
& \text { What is } \operatorname{Pr}[\mathrm{TB}] ?
\end{aligned}
\end{aligned}
\]
 CDC got reports of 11,000 cases of TB in US in 2011. Will be lots of unreported. So estimate:
\[
\operatorname{Pr}[T B] \approx \frac{1}{10,000}
\]
\[
\text { ©(1)(®)} \quad \text { Albert R Meyer, } \quad \text { May 3, } 2013 \quad \text { bayes. } 18
\]


\section*{Bayes Rule}
\[
\begin{aligned}
\operatorname{Pr}[\mathrm{TB} \mid+] & =\frac{\operatorname{Pr}[+\mid \mathrm{TB}] \cdot \operatorname{Pr}[\mathrm{TB}]}{\operatorname{Pr}[+]} \\
\operatorname{Pr}[B \mid A] & =\frac{\operatorname{Pr}[A \mid B] \cdot \operatorname{Pr}[B]}{\operatorname{Pr}[A]}
\end{aligned}
\]
(5:) A "more accurate" test \(99 \%\) accurate test is not so good here. In fact, there's a trivial test that is 99.99\% accurate:
always say "No TB" Albert R Meyer, May 3, 2013
99\% accuracy still useful
\(99 \%\) accurate test did
increase your probability
of TB 100 times. If you
only had 5 M medicine doses
for a population of 350M,
whom should you medicate?
and
Medicate the 3.5M who test
positive, and you're likely to
cure nearly all the cases.```

