

True for all truth-values. Example:
(P IMPLIES Q) OR (Q IMPLIES P)
cc) $1 \times(1)$

Albert R Meyer, February 17, 2012

\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 | \\ | 12 | | 10 | 5 |
| :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 |
| 15 | 8 | 11 | 2 | \\ Predicate Calculus Validity \\ True for all domains and predicates*. Example: \\ $\forall z .[P(z)$ AND $Q(z)]$ IMPLIES \\ [$\forall x . P(x)$ AND $\forall y . Q(y)]$ \\ *aka tautology}

DeMorgan's Law for Quantifiers
Another valid formula:

$$
\begin{aligned}
& \operatorname{NOT}(\forall x \cdot P(x)) \text { IFF } \\
& \exists y \cdot \operatorname{NOT}(P(y))
\end{aligned}
$$

\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 | \\ | 12 | | 10 | 5 |
| :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 |
| | | | 11 |\\ DeMorgan's Law for Quantifiers \\ Another valid formula: \\ ``

NOt(AND

``` \(\mathrm{OR}_{y} \operatorname{Not}(P(y))\)}

\section*{\begin{tabular}{|c|c|c|c|}
\hline 6 & & 13 & \\
\hline 12 & 10 & 7 \\
\hline & 10 & 5 \\
\hline
\end{tabular} \\ \begin{tabular}{|c|c|cc|}
\hline 12 & & 10 & 5 \\
\hline 3 & 1 & 4 & 14 \\
\hline 15 & & 11 & 2
\end{tabular} \\ Proving Validity \\ \(\forall z[Q(z) \wedge P(z)] \rightarrow[\forall x . Q(x) \wedge \forall y . P(y)]\)}

Proof: Assume left hand side. That is, for all values of \(z\) in the domain, \(Q(z)\) AND \(P(z)\) is true.
Suppose \(\operatorname{val}(z)=c\), an element in the domain. Then \(Q(c)\) AND \(P(c)\) holds, and so \(Q(c)\) by itself holds.
But \(c\) could have been any element of the domain.
So we conclude \(\forall x . Q(x)\). (by UG)
similarly conclude \(\forall y \cdot P(y)\). Therefore, \(\forall x . Q(x)\) AND \(\forall y . P(y)\) QED
Similar Example is Not Valid
\([P(z)\) OR Q(z)]: IMPLIES \([\forall x \cdot P(x)\) OR \(\forall y \cdot Q(y)]\) :
Proof: Give counter-model, where left side of IMPLIES is \(T\), but right side is \(F\).
Namely, let domain ::= \{1, 2\},
\[
Q(z)::=[z=1], P(z)::=[z=2] .
\]
\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & 10 & 5 \\
\hline & & 10 & \\
\hline
\end{tabular} \begin{tabular}{l|l|l|l|}
\hline 12 & 1 & \\
\hline 3 & 1 & 4 & 54 \\
\hline & & & \\
\hline
\end{tabular} \begin{tabular}{|c|ccc|}
\hline 3 & 1 & 4 & 5 \\
\hline 3 & 14 \\
\hline 15 & 8 & 11 & 2 \\
\hline
\end{tabular}

\section*{Universal Generalization (UG)}
\[
\frac{F(c)}{\forall x \cdot F(x)}
\]
where \(c\) is a constant symbol that has not appeared earlier


Universal Generalization (UG)
\[
\frac{F(c)}{\forall x \cdot F(x)}
\]
\(c\) is a "fresh symbol"

Universal Generalization (UG)
\[
\frac{F(c)}{\forall x \cdot F(x)}
\]

Subtlety:
\(F(c)\) does not imply \(\forall x . F(x)\)
\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline 3 & 1 & 4 & 14 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|lll|}
\hline 3 & 1 & 4 & 14 \\
\hline & 1 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cc|}
\hline 3 & 1 & 4 & 14 \\
\hline 15 & 8 & 11 & 2 \\
\hline
\end{tabular}
```

