

 6
 9
 13
 7

 12
 10
 5

 3
 1
 4
 14

 15
 8
 11
 2

 Euler φ function $\phi(\mathbf{n}) ::= \# \mathbf{k} \in [0,\mathbf{n})$ s.t. k rel. prime to n $\odot \odot \odot$ Albert R Mever March 11, 2015 phi.2

Euler
$$\phi$$
 function
 $gcd1\{n\}$::=
 $\{k \in [0,n) \mid gcd(k,n)=1\}$
So $\phi(n) = |gcd1\{n\}|$
(some books write
 n^* for $gcd1\{n\}$)
Euler Meyer March 11, 2015 phi 4

1

Euler
$$\phi$$
 function
 $gcd1\{n\}$::=
 $\{k \in [0,n) \mid gcd(k,n)=1\}$
 $gcd1\{7\} = \{1,2,3,4,5,6\}$
 $gcd1\{12\} =$
 $\{0,1,2,3,4,5,6,7,8,9,10,11\}$

Euler
$$\phi$$
 function
 $gcd1\{n\}$::=
 $\{k \in [0,n) \mid gcd(k,n)=1\}$
 $\phi(7) = 6$
 $gcd1\{12\} =$
 $\{0,1,2,3,4,5,6,7,8,9,10,11\}$
Net Rever March 11, 2015 ph 17

Euler
$$\phi$$
 function
 $gcd1\{n\}$::=
 $\{k \in [0,n) \mid gcd(k,n)=1\}$
 $\phi(7) = |\{1,2,3,4,5,6\}|$
 $gcd1\{12\} =$
 $\{0,1,2,3,4,5,6,7,8,9,10,11\}$
Euler ϕ function
 $\phi(7) = |\{1,2,3,4,5,6\}|$
 $gcd1\{12\} =$
 $\{0,1,2,3,4,5,6,7,8,9,10,11\}$

Euler
$$\phi$$
 function
 $gcd1\{n\}$::=
 $\{k \in [0,n) \mid gcd(k,n)=1\}$
 $\phi(7) = 6$
 $\phi(12) =$
 $\{1, 5, 7, 11\}|$

Euler
$$\phi$$
 function
 $gcd1\{n\}$::=
 $\{k \in [0,n) \mid gcd(k,n)=1\}$
 $\phi(7) = 6$
 $\phi(12) = 4$
Euler $\phi(12) = 4$

Calculating
$$\phi$$

 $\phi(9)$? 0,1,2,3,4,5,6,7,8
k rel. prime to 9 iff
k rel. prime to 3
3 divides every 3rd number
 $So, \phi(9) = 9-(9/3) = 6$

Calculating
$$\phi$$

If p prime, everything in
[1,p) is rel. prime to p, so
 $\phi(p) = p - 1$

Calculating $\phi(p^k)$ $0,1,...,p,...,2p,...,p^{k}-p,...,p^{k}-1$ p divides every pth number p^k/p of these numbers are not rel. prime to p^k

Calculating
$$\phi(p^k)$$

SO
 $\phi(p^k) = p^k - p^k/p$

Calculating
$$\phi(a \cdot b)$$

Lemma:
For a, b relatively prime,
 $\phi(a \cdot b) = \phi(a) \cdot \phi(b)$
pf: Given as problem.
Also later by "counting."

Calculating
$$\phi(p^k)$$

SO
 $\phi(p^k) = p^k - p^{k-1}$

Calculating
$$\phi(a \cdot b)$$

 $\phi(12) = \phi(3 \cdot 4)$
 $= \phi(3) \cdot \phi(4)$
 $= (3 - 1) \cdot (2^2 - 2^{2-1})$
 $= 2 \cdot (4 - 2) = 4$

