Euler's Function

$\phi(n)::=\# k \in[0, n)$
s.t. k rel. prime to n

$$
\begin{aligned}
& \text { Euler } \phi \text { function } \\
& \text { gcd1\{n\} }::= \\
& \{k \in[0, n) \mid \operatorname{gcd}(k, n)=1\} \\
& \text { so } \phi(n)=|g c d 1\{n\}| \\
& \text { (some books write } \\
& n^{\star} \text { for gcd1\{n\}) }
\end{aligned}
$$


```
gcd1{n} ::=
    {k\in[0,n)| gcd(k,n)=1}
gcd1{7} = {1,2,3,4,5,6}
gcd1{12} =
{0,1,2,3,4,5,6,7,8,9,10,11}
```



```
gcd1{n} ::=
    {k\in[0,n)| gcd(k,n)=1}
    \phi(7)=6
gcd1{12}=
{0,1,2,3,4,5,6,7,8,9,10,11}
```

 $\operatorname{gcd} 1\{n\}::=$ $\{k \in[0, n) \mid \operatorname{gcd}(k, n)=1\}$ $\phi(7)=|\{1,2,3,4,5,6\}|$ $\operatorname{gcd} 1\{12\}=$ $\{0,1,2,3,4,5,6,7,8,9,10,11\}$


```
Euler $ function
gcd1{n} ::=
{k\in[0,n)|\operatorname{gcd}(k,n)=1}
\phi(7)=6
    \phi(12)=4
```

Calculating ϕ
$\phi(9) ? \quad 0,1,2,3,4,5,6,7,8$
k rel. prime to 9 iff
k rel. prime to 3
3 divides every 3 rd number
so, $\phi(9)=9-(9 / 3)=6$

Calculating ϕ
If p prime, everything in [$1, p$) is rel. prime to p, so

$$
\phi(p)=p-1
$$

Calculating $\phi\left(p^{k}\right)$
$0,1, \ldots, \ldots, \ldots, 2 p, \ldots, p^{k}-p, \ldots, p^{k}-1$
p divides every pth number p^{k} / p of these numbers are not rel. prime to p^{k}
Calculating $\phi\left(p^{k}\right)$ So

$$
\phi\left(p^{k}\right)=p^{k}-p^{k} / p
$$

Calculating $\phi(a \cdot b)$
 Lemma:

For a, b relatively prime, $\phi(a \cdot b)=\phi(a) \cdot \phi(b)$
pf: Given as problem.
Also later by "counting."

$$
\begin{aligned}
& \text { Calculatang } \phi(a \cdot b) \\
& \phi(12)=\phi(3 \cdot 4) \\
& =\phi(3) \cdot \phi(4) \\
& =(3-1) \cdot\left(2^{2}-2^{2-1}\right) \\
& =2 \cdot(4-2)=4
\end{aligned}
$$

```
*)
For k relatively
prime to n,
k}\mp@subsup{}{}{\phi(n)}\equiv1(\operatorname{mod}n
@()()
    Albert R Meyer March 11, 2015
```

