
 MIT 6.042J/18.062J
 Independent Sampling Theorem

Weak Law of Large Numbers

$A_{n}::=$ avg of n indep RV's with mean μ, var σ^{2}
Theorem: For all $\delta>0$
$\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|A_{n}-\mu\right|>\delta\right]=0$
Proof:
@(®)(O)

Albert R Meyer, May 13, 2013

$$
\begin{aligned}
& \text { Weak Law of Large Numbers } \\
& A_{n}:=\text { avg of } n \text { indep RV's } \\
& \text { with mean } \mu \\
& \text { Theorem: For all } \delta>0 \\
& \lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|A_{n}-\mu\right|>\delta\right]=0 \\
& \text { Proof: }
\end{aligned}
$$

> Weak Law of Large Numbers So by Chebyshev $\operatorname{Pr}\left[\left|A_{n}-\mu\right|>\delta\right] \leq \frac{\operatorname{Var}\left[A_{n}\right]}{\delta^{2}}$ need only show $\operatorname{Var}\left[A_{n}\right] \rightarrow 0$ as $n \rightarrow \infty$

Analysis of the Proof

proof only used that R_{1}, \ldots, R_{n} have

- same mean
- same variance
- \& variances add
- which follows from pairwise independence

$$
\begin{aligned}
& \operatorname{Var}\left[A_{n}\right] \\
& \operatorname{Var}\left[A_{n}\right]=\operatorname{Var}\left[\frac{R_{1}+R_{2}+\cdots+R_{n}}{n}\right] \\
& =\frac{\operatorname{Var}\left[R_{1}\right]+\operatorname{Var}\left[R_{2}\right]+\cdots+\operatorname{Var}\left[R_{n}\right]}{n^{2}} \\
& \text { QED }=\frac{n \sigma^{2}}{n^{2}}=\frac{\sigma^{2}}{n} \rightarrow 0 \\
& \text { Alear R Merer. }
\end{aligned}
$$

```
[g|,0%:
Pairwise Independent Sampling
The punchline:
we now know how big a sample is
needed to estimate the mean of
any* random variable within
any* desired tolerance with
any* desired probability
    *variance < < , tolerance > 0,
    probability < 1
```

Albert R Meyer, May 13, 2013
sampletheorem. 10

