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Independent 
Sampling Theorem 
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Proof:  

  
lim
n→∞

Pr[ |A
n
- µ |> δ ]= 0

Weak Law of Large Numbers 
An::= avg of n indep RV’s 
with mean μ 
Theorem: For all δ > 0 
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Proof:  

  
lim
n→∞

Pr[ |A
n
- µ |> δ ]= 0

Weak Law of Large Numbers 
An::= avg of n indep RV’s 
with mean μ, var σ2 
Theorem: For all δ > 0 
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So by Chebyshev 

  
Pr[ |A

n
- µ |>δ ] ≤

Var[A
n
]

δ2

Weak Law of Large Numbers 

need only show 
Var[An] → 0  as  n → ∞   
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Analysis of the Proof 

proof only used that R1,…,Rn have 
• same mean 
• same variance 

• & variances add  
 ⎯ which follows from 
pairwise independence 
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Pairwise Independent Sampling 

Let R1,…,Rn be pairwise independent 
random vars with the same finite  
mean µ and variance σ2.  Let 
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Theorem: 
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Pairwise Independent Sampling 

The punchline: 
we now know how big a sample is 
needed to estimate the mean of 
any* random variable within 
any* desired tolerance with 
any* desired probability 
*variance < ∞, tolerance > 0, 
  probability < 1 


