Midterm Exam February 22

Your name:_____

	1PM	32-082 Table (1–13):	
Indicate your Identify your Team:	1PM	32-044 Table (A-K):	
	2:30PM	32-044 Table (A-K):	

- This exam is **closed book** except for a 2-sided cribsheet. Total time is 90 minutes.
- Write your solutions in the space provided. If you need more space, write on the back of the sheet containing the problem.
- In answering the following questions, you may use without proof any of the results from class or text.
- GOOD LUCK!

DO NOT WRITE BELOW THIS LINE

Problem	Points	Grade	Grader
1	0		
2	0		
3	0		
4	0		
5	0		
Total	0		

^{2018,} Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license.

2 Your name:___

Problem 1 ().

Use the Well Ordering Principle to prove that

$$n < 3^{n/3} \tag{(*)}$$

for every nonnegative integer n.

Hint: Verify (*) for $n \le 4$ by explicit calculation.

Problem 2 ().

Let $f : D \to D$ be a total function from some nonempty set D to itself. In the following propositions, x and y are variables ranging over D, and g is a variable ranging over total functions from D to D. Circle all of the propositions that are equivalent to the proposition that f is an *injection*. No explanations are necessary.

- (i) $\forall x \forall y. x = y \text{ OR } f(x) \neq f(y)$
- (ii) $\forall x \forall y. x = y$ IMPLIES f(x) = f(y)
- (iii) $\forall x \forall y. x \neq y$ IMPLIES $f(x) \neq f(y)$
- (iv) $\forall x \forall y$. f(x) = f(y) IMPLIES x = y
- (v) NOT[$\exists x \exists y. x \neq y \text{ AND } f(x) = f(y)$]
- (vi) NOT[$\exists y \forall x. f(x) \neq y$]
- (vii) $\exists g \forall x. g(f(x)) = x$
- (viii) $\exists g \forall x. f(g(x)) = x$

Problem 3 ().

There is a bucket containing more blue balls than red balls. As long as there are more blues than reds, any one of the following rules may be applied to add and/or remove balls from the bucket:

- (i) Add a red ball.
- (ii) Remove a blue ball.
- (iii) Add two reds and one blue.
- (iv) Remove two blues and one red.

(a) Starting with 10 reds and 16 blues, what is the largest number of balls the bucket will contain by applying these rules?

Let b be the number of blue balls and r be the number of red balls in the bucket at any given time.

(b) Prove that $b - r \ge 0$ is a preserved invariant of the process of adding and removing balls according to rules (i)–(iv).

Your name:_____

(c) Find a nonnegative integer-valued derived variable that is strictly decreasing, and use it to prove that no matter how many balls the bucket contains, repeatedly applying rules (i)–(iv) will eventually lead to a state where no further rule can be applied.

Problem 4 ().

Four unfortunate children want to be adopted by four foster families of ill repute. A child can only be adopted by one family, and a family can only adopt one child. Here are their preference rankings (most-favored to least-favored):

Child	Families		
Bottlecap:	Hatfields, McCoys, Grinches, Scrooges		
Lucy:	Grinches, Scrooges, McCoys, Hatfields		
Dingdong:	Hatfields, Scrooges, Grinches, McCoys		
Zippy:	McCoys, Grinches, Scrooges, Hatfields		
Famil	y Children		
Grinches	: Zippy, Dingdong, Bottlecap, Lucy		
Hatfields	: Zippy, Bottlecap, Dingdong, Lucy		
Scrooges	: Bottlecap, Lucy, Dingdong, Zippy		
McCoys	: Lucy, Zippy, Bottlecap, Dingdong		

(a) Exhibit two different stable matching of Children and Families.

Family	Child in 1st match	Child in 2nd match
Grinches:		
Hatfields:		
Scrooges:		
McCoys:		

(b) Examine the matchings from part (a), and explain why these matchings are the only two possible stable matchings between Children and Families.

Hint: In general, there may be many more than two stable matchings for the same set of preferences.

Problem 5 ().

The set RecMatch of strings of matched brackets is defined recursively by

Base case: The empty string $\lambda \in \text{RecMatch}$.

Constructor case: If $s, t \in \text{RecMatch}$, then

 $[s]t \in \text{RecMatch.}$

An alternative definition is the set AmbRecMatch defined recursively by

Base case: $\lambda \in AmbRecMatch$.

Constructor cases: If $s, t \in AmbRecMatch$, then

- $[s] \in AmbRecMatch, and$
- $st \in AmbRecMatch$.

Fill in the following parts of a proof by structural induction that

$$RecMatch \subseteq AmbRecMatch.$$
(*)

(As a matter of fact, AmbRecMatch = RecMatch, though we won't prove this here.)

(a) State an **induction hypothesis** suitable for proving (*) by structural induction.

(b) State and prove the base case.

(c) Prove the inductive step.

An advantage of the RecMatch definition is that it is *unambiguous*, while the definition of AmbRecMatch is ambiguous.

(d) Give an example of a string whose membership in AmbRecMatch is ambiguously derived.

(e) Briefly explain what advantage unambiguous recursive definitions have over ambiguous ones. (Remember that "ambiguous recursive definition" has a technical mathematical meaning which does not imply that the ambiguous definition is unclear.)