

Magic Trick Revealed（I）
Among 5 cards chosen：
at least 2 have the same suit
（Pigeonhole Principle）
A hides one，lists the other one $1^{\text {st }}$ magictrickII． 3

```
Aha! The first card has the
```

Aha! The first card has the
same suit as the hidden card!

```
same suit as the hidden card!
```


哃比異 A Magic Trick
 audience chooses 5 cards Assistant reveals 4 of them Magician announces $5^{\text {th }}$ card！
 （1）（1）（2）
 Albert R Meyer，April 24， 2013

 Magic Trick Revealed（II）

How does M figure out the rank of the hidden card？

Aha！Look at the order of the other 3 cards！

Magic Trick Revealed (II)
Wait! Only have 6 sequences of the remaining 3 cards, but 12 possible hidden cards of the known suit!

Of two cards with the same suit, choosing which to reveal can give 1 more bit of information!

Aha!

```
Magic Trick Revealed (II)
Possible orders for the remaining 3 cards:
\{ SML, SLM, MSL, MLS, LSM, LMS \}
©(2)
Albert R Meyer, April 24, 2013 magictrickII. 6
```


Magic Trick Revealed (Finally)

- The first card determines the hidden suit $(\uparrow \downarrow \not \&)$.
- Hidden rank (A ... K) = first-card rank + offset (≤ 6).
- Offset given by order of remaining 3 cards:

$$
\begin{aligned}
& S M L=1, S L M=2, M S L=3, \\
& M L S=4, L S M=5, L M S=6 .
\end{aligned}
$$

Albert R Meyer, April 24, $2013 \quad$ magictrickII. 9
won't work with 4-card hands

$$
\begin{array}{l:l}
\begin{array}{l}
\text { audience } \\
\text { can pick }
\end{array} & \begin{array}{l}
\text { A can } \\
\binom{52}{4}=270,725
\end{array} \\
\begin{array}{ll}
\text { reveal } \\
\text { possible 4-card } \\
\text { hands } & \text { possible 3-card } \\
\text { lists }
\end{array}
\end{array}
$$

won't work with 4 card hands
so at least

$$
\left\lceil\frac{270,725}{132,600}\right\rceil=3
$$

hands map to the same list

- M can't tell which!
cco
Albert R Meyer, April 24, 2013

