
 MIT 6.042J/18.062J
 The Law of Large Numbers

What probability means

$$
\operatorname{Pr}[\text { roll } 6]=\frac{1}{6}
$$

We believe that after many rolls, the fraction of 6's will be near $1 / 6$.
\qquad

Jacob D. Bernoulli (1659-1705)

Even the stupidest man - by some instinct of nature per se and by no previous instruction (this is truly amazing) - knows for sure that the more observations ...that are taken, the less the danger will be of straying from the mark.
---Ars Conjectandi (The Art of Guessing), 1713*

Introduction to Probability, American Mathematical Society, p. 310 .

What the mean means
The mean value of a fair die roll is 3.5 , but we will never roll 3.5. So why do we care what the mean is? We believe that after many rolls, the average roll will be near 3.5. be near 3.5.
,

$$
\begin{aligned}
& \text { n } \pm 10 \% ~ \pm 5 \%
\end{aligned}
$$

If you rolled 3000 times and did not get 450-550 6's

```
3000 0.98 0.78
```

監踢 Pr [Average $=1 / 6 \pm \%$]

n	$\pm 10 \%$	$\pm 5 \%$	Pr bigger with \# rolls
6	0.4	0.4	
60	0.26	0.14	
600	0.72	0.41	
1200	0.88	0.56	
3000	0.98	0.78	
6000	0.999	0.91	
Pr smaller for better \%			

[^0]

```
If you rolled 3000 times and did not get 475-525 6's, you can be \(78 \%\) confident your die is loaded
    3000 0.98 0.78
```

What Bernoulli means
Random var R with
mean μ.

It certainly remains to be inquired whether after the number of observations has been increased, the probability... of obtaining the true ratio...finally exceeds any given degree of certainty; or whether the problem has, so to speak, its own asymptote -that is, whether some degree of certainty is given which one can never exceed.
 Albert R Meyer, May 13, 2013 largenumbers. 14

What Bernoulli means
Random var R with mean μ. Make n "trial observations" of R and take the average
Mutually independent, identically distributed (i.i.d) random variables

$$
R_{1}, \cdots, R_{n}
$$

with mean μ
Albert R Meyer,

take average:

$$
A_{n}::=\frac{R_{1}+R_{2}+\cdots+R_{n}}{n}
$$

probably close to μ

$$
\operatorname{Pr}[\left|A_{n}-\mu\right| \leq \underbrace{\delta}]=?
$$

$$
\text { as close as } \delta>0
$$

Repeated Trials take average:

$$
A_{n}::=\frac{R_{1}+R_{2}+\cdots+R_{n}}{n}
$$

Bernoulli question: is average probably close to μ if n is big?
©(1)(6) Albert R Meyer, May 13, 2013 largenumbers. 20

```
Jacob D. Bernoulli (1659-1705)
```

Therefore, this is the problem which I now set forth and make known after I have pondered over it for twenty years. Both its novelty and its very great usefulness, coupled with its just as great difficulty, can exceed in weight and value all the remaining chapters of this thesis.

Weak Law of Large Numbers
$\lim \operatorname{Pr}\left[\left|A_{n}-\mu\right|>\delta\right]=0$
$n \rightarrow \infty$
will follow easily by Chebyshev \& variance properties

[^0]:
 $n \quad \pm 10 \% \pm 5 \%$
 If you rolled 3000 times and did not get 450-550 6's you can be 98% confident your die is loaded
 $30000.98 \quad 0.78$

