

So arithmetic $(\bmod n)$ a lot like ordinary arithmetic the main difference:
$8 \cdot 2 \equiv 3 \cdot 2(\bmod 10)$
$8 \neq 3 \quad(\bmod 10)$
no arbitrary cancellation
© (1) © Albert R Meyer, March 9, 2015 \qquad

$$
\begin{aligned}
& \text { If } a \equiv b(\bmod n) \& \\
& \quad c \equiv d(\bmod n), \\
& \text { then } a+c \equiv b+d(\bmod n) \\
& \text { then } a \cdot c \equiv b \cdot d(\bmod n)
\end{aligned}
$$

```
inverses (mod n)
If gcd(k,n)=1, then have k
    k'k\equiv1(mod n).
k' is an inverse mod n of k
pf: sk + tn=1,so
just let k' be s
Hid cancellation \((\bmod n)\)
If \(a \cdot k \equiv b \cdot k(\bmod n)\)
    and \(\operatorname{gcd}(k, n)=1\), then
multiply by \(k\) :
    \((a \cdot k) \cdot k^{\prime} \equiv(b \cdot k) \cdot k^{\prime}(\bmod n)\)
    \(a \cdot 1 \equiv b \cdot 1\)
    so \(a \equiv b(\bmod n)\)
```

inverses (mod n)
sk+tn=1
sk+tn =1(mod n)
sk+t0 \equiv1(mod n)
sk }\equiv1(\operatorname{mod}n
so s is an inverse of k
c() ()
Albert R Meyer, March 9, 2015

