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Hall's
Theorem
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:f%  Bipartite match
A match is a
total injective function

m:L(H)—R(H)
that follows edges
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Bipartite graph H

Bipartite match
A match is a

total injective function
m:L(H)—R(H)
|—m(l) € E(H)
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Bipartite match
A match is a
total injective function

m:L(H)—R(H)
graph(m) < E(H)
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BH.° Hall's Theorem
Hall's condition

If |S|I<|E(S)| for all
sets SCL(H)
then there is a match.
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“'ms How to verify no bottlenecks?

fairly efficient matching

procedure is known
(explained in algorithms subjects)
..but there is a special
situation that ensures a
match...
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“m How to verify no bottlenecks?

If every girl likes > d boys,
and every boy likes < d girls,
then no bottlenecks.

a degree-constrained
bipartite graph
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- B . . o
omog Degree constrained implies
‘Hall condition

If every girl likes > d
and every boy likes

then no bottlenecks.
proof:

boys,
d girls,
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mcH Degree constrained implies
. Hall condition
If every girl likes > d
and every boy likes
then no bottlenecks.
proof: say set S of girls has e
incident edges:
d-|S| <e < d-[E(S)
so |S| < |E(S)I

boys,
d girls,

no bottleneck QED
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@i Proof of Hall's Theorem

Suppose ho bottlenecks.

Lemma: No bottlenecks

obviously
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within any set S of girls.
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Proof of Hall's Theorem

Suppose ho bottlenecks.
Lemma: If S a set of girls with

|SI=1E(S),

then no bottlenecks between

Sand E(S) either
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By bottleneck between S & E(S) ?
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8 bottleneck between S & E(S) ?

bottleneck between S & E(S) ?

— T U bottleneck
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is a bottleneck 36
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No bottlenecks implies
there is a perfect match.
proof:

by strong induction

on # girls

Proof of Hall's Theorem
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i\ Proof of Hall's Theorem
Case 1: there is a nonempty

proper subset S of girls with

HHHHHHH

|SI=|E(S)I.
by Lemmas, no bottlenecks in
Hall graph (S, E(S)),
and none in (g @)
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by induction, match

(S, E(5)) and (S, E(S))
separately.

Proof of Hall's Theorem
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by induction, match

(S, E(5)) and (S,E(S))
separately. Matchings
don't overlap, so union

Proof of Hall's Theorem
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is a complete matching.
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bg o Hall's Theorem
Case 2: |S|<|E(S)| for all

Pick a girl, g.
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honempty proper subsets S.
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ag - o Hall's Theorem

Case 2: |S|<|E(S)| for all
nhonempty proper subsets S.

Pick a girl, g. She must be
compatible with some boy, b.
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oo Hall's Theorem
Case 2: |S|<|E(S)| for all

Match g with b.
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nonempty proper subsets S.
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gf.c Hall's Theorem

Case 2: |S|<|E(S)| for all
honempty proper subsets S.

Match g with b. Removing b
still leaves |S|<|E(S)|, so no

bottlenecks.
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bg o Hall's Theorem

Case 2: |S|<|E(S)| for all
nonempty proper subsets S.

By induction, can match
remaining girls & boys. This
match along with g—b is
complete match. QED
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