

Black-white coloring Let G be a connected, weighted simple graph. Color each vertex of G black or

胃: Connected Graph G Let G be a connected, weighted simple graph. Assume all edges have different weights.

6	9	13	7
12		10	5
			4

3		10	
3	1	4	14
15	8	11	2

Black-white coloring
Let G be a connected, weighted simple graph. Color each vertex of G black or white, not all same color.

Gray Edges
 A gray edge connects vertices with different colors:
 There must be a gray edge since G connected

 Theorem:
 \mathbb{e} is an edge of every min-weight spanning tree (MST)

Gray Edges
 A gray edge connects vertices with different colors:
 Let e be a min-weight gray edge.

Min Gray Edges Sufficient
There is a spanning tree built of min-weight gray edges
-- from previous slides.


```
|\mp@code{cosccc|}
min-weight gray = MST
Corollary: There is a unique
    MST. It consists of all
    min-weight gray edges
    under black-white
    colorings.
```


Gray Edge Swap Lemma Suppose e not an edge of $\operatorname{css} C$. Then there is an edge g of C :
 (i) $w t(e)<w t(g)$
 (ii) $C-g+e$ is a css

 So \mathbb{e} is necessarily in any min-weight css.

Gray Edge Swap Lemma
So C is not minimum css because $C-g+e$ has smaller weight.

蹋暗 Proof of Swap Lemma
Say $e=\langle\mathbf{u}-\mathrm{v}\rangle$.
C connected, so have path
$\vec{p}=u-\cdots-v$.
c) (1) (2) Albert R Meyer October 31, 2017

