Min-Gray Edges give Min-Weight Tree

Let G be a connected, weighted simple graph. Assume all edges have different weights.

Black-white coloring
Let G be a connected, weighted simple graph. Color each vertex of G black or white, not all same color.
A gray edge connects vertices with different colors:

There must be a gray edge since G connected

Let e be a min-weight gray edge.

Min Gray Edge Necessary

Theorem: e is an edge of every min-weight spanning tree (MST)

Min Gray Edges Sufficient

There is a spanning tree built of min-weight gray edges

-- from previous slides.
Corollary: There is a unique MST. It consists of all min-weight gray edges under black-white colorings.

Gray Edge Swap Lemma

Let C be a connected spanning subgraph (CSS) of G. If e is not an edge of CSS C, then...
Gray Edge Swap Lemma

Suppose e not an edge of css C. Then there is an edge g of C:

(i) $\text{wt}(e) < \text{wt}(g)$
(ii) $C - g + e$ is a css

Min Gray Edge Necessary

So e is necessarily in any min-weight css.

Proof of Swap Lemma

Say $e = <u - v>$. C connected, so have path $\vec{p} = u \cdots v$.
Proof of Swap Lemma

\(p \) connects \(u \) white to black \(v \)

Proof of Swap Lemma

\(p \) must have gray edge \(g \)

Proof of Swap Lemma

\(p \) must have gray edge \(g \)

Proof of Swap Lemma

\(wt(e) < wt(g) \)
Proof of Swap Lemma

\[C - g \]

\[g \]

\[wt(e) < wt(g) \]

Proof of Swap Lemma

\[C - g + e \]

is connected:
end-points of \(g \) connected by path

QED