

Geometric Series	
$G_{n}=1+x+x^{2}+\cdots+x^{n}$	
$-x G_{n}=-x-x^{2}-\cdots-x^{n}-x^{n+1}$	

Geometric Series
$G_{n}=1+x+x^{2}+\cdots+x^{n}$
$-x G_{n}=-x-x^{2}-\cdots-x^{n}-x^{n+1}$
(1)

$$
\begin{gathered}
\text { Geometric Series } \\
G_{n}=\frac{1-x^{n+1}}{1-x}
\end{gathered}
$$

Consider infinite sum (series)

$$
1+x+x^{2}+\cdots+x^{n-1}+x^{n}+\cdots=\sum_{i=0}^{\infty} x^{i}
$$

$$
\begin{gathered}
\text { Infinite Geometric Series } \\
G_{n}=\frac{1-x^{n+1}}{1-x} \\
\lim _{n \rightarrow \infty} G_{n}=\frac{1-\lim _{n \rightarrow \infty} x^{n+1}}{1-x}=\frac{1}{1-x} \\
\end{gathered}
$$

The future value of $\$ \$$

I will pay you $\$ 100$ in 1 year, if you will pay me $\$ \times$ now.

Tive future value of $\$ \$$
My bank will pay me 3% interest. define bankrate
b ::= 1.03

- bank increases my \$\$ by this factor in 1 year.

```
蹋踤 The future value of $$
If I deposit your $X now,
I will have $b
So I won' † lose money as long as
    b\cdotx\geq100
    x \geq$100/1.03 \approx $97.09
    (0)
        Albert R Meyer,
        April 10, 2013
    \$ \(n\) paid \(k\) years from now
        is worth \(\$ n \cdot r^{k}\) today
    where \(r::=1 /\) bankrate .
The future value of \(\$ \$\)

Ti
- \(\$ 1\) in 1 year is worth \(\$ 0.9709\) now.
- \$r last year is worth \(\$ 1\) today, where \(r::=1 / b\).
- So \(\$ n\) paid in 2 years is worth \(\$ n r\) paid in 1 year, and is worth \(\$ n r^{2}\) today.
@(1) Albert R Meyer, April 10, 2013 geometric-sum. 14
Annuities
I pay you \(\$ 100 /\) year for 10 years,
if you will pay me \(\$\) y now.
I can't lose if you pay me
\(100 r+100 r^{2}+100 r^{3}+\cdots+100 r^{10}\)
\(=100 r\left(1+r+\cdots+r^{9}\right)\)
\(=100 r\left(1-r^{10}\right) /(1-r)=\$ 853.02\)

\[
\begin{aligned}
& \sum_{i=1}^{n} i x^{i-1}=\frac{x-(n+1) x^{n+1}+n x^{n+2}}{(1-x)^{2}}
\end{aligned}
\]```

