

$$
\begin{aligned}
& \text { Generalized Product Rule } \\
& \text { \# lineups of } 5 \text { students in class } \\
& \text { let } S::=\text { students } \\
& \text { say }|S|=91 \text { so } \\
& \text { Ilineups of } 5 \text { students| NO! } \\
& \text { student can't be in } 2 \text { places: } \\
& \text { |seqs in } S^{5} \text { with no repeats } \mid ?
\end{aligned}
$$

Albert R Meyer, November 6, 2015


```
    Q a set of length-k sequences
    if n}\mp@subsup{n}{1}{}\mathrm{ possible 1 1}\mp@subsup{}{}{\mathrm{ st }}\mathrm{ elements,
    n
            (for each first entry),
    n}\mp@subsup{n}{3}{}\mathrm{ possible 3rd elements
        (for each 1 1st & 2nd entry,...)
    then, }|Q|=\mp@subsup{n}{1}{}\cdot\mp@subsup{n}{2}{}\cdots\mp@subsup{n}{k}{
```

(c) (1) ©

Division Rule
if function from A to B
is k-to-1, then
$\quad|A|=k|B|$
(generalized Bijection Rule)

	Counting Subsets		
How many size 4 subsets of $\{1,2, \ldots, 13\}$ ？			
\｛1，2，3，4\}			
\｛1，2，3，5\}			
\｛3，4，7，11\}			
\vdots			
$?$			
＠○○	Aberemerer．	Noenmerec． 2015	geare

品谓路 Counting Subsets

$a_{1} a_{3} a_{2} a_{4} a_{5} \ldots a_{12} a_{13}$ also maps
to $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$
so does $\underbrace{a_{1} a_{3} a_{2} a_{4}}_{4 \text { ！perms }} \underbrace{a_{13} \ldots a_{12} a_{5}}_{9 \text { ！perms }}$
all map to same set
4! 9!-to-1
©（1）©
＋

Counting Subsets

How many size 4 subsets of $\{1,2, \ldots, 13\}$ ？ Let $A::=$ permutations of $\{1,2, \ldots, 13\}$
$B::=$ size 4 subsets
map $a_{1} a_{2} a_{3} a_{4} a_{5} \ldots a_{12} a_{13} \in A$
to $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \quad \in B$
cc．（1）（2） Albert R Meyer， November 6， 2015

是四路 Counting Subsets

$$
13!=|A|=(4!\cdot 9!)|B|
$$

so \＃of size 4 subsets is

$$
\binom{13}{4}::=\frac{13!}{4!9!}
$$

（c）（1）©

$$
\text { Albert R Meyer, } \quad \text { November 6, } 2015
$$

