

Computing GCD's The Euclidean Algorithm

@ 0 @

Albert R Meyer

March 6, 2015

acdeuclid 1

GCD Termination

At each transition, x is replaced by y. If $y \le x/2$, then x gets halved at this step.

Albert R Meyer

March 6, 2015

gcdeuclid.9

GCD Termination

At each transition, x is replaced by y. If $y \le x/2$, then x gets halved at this step. If y > x/2, then rem(x,y) = x - y < x/2, so y gets halved when it is replaced by rem(x,y) after the next step.

Albert R Meyer

March 6, 2015

gcdeuclid.10

GCD Termination

y halves or smaller at every other step, so reaches minimum in $\leq \log_2 b$ steps.

@ 0 0

Albert R Meyer

March 6, 2015

acdeuclid.11