Mathematics for Computer Science MIT $6.042 \mathrm{~J} / 18.062 \mathrm{~J}$

Computing GCD's The Euclidean Algorithm

```
GCD Remainder Lemma
Lemma:
gcd(a,b) = gcd(b, rem(a,b))
for b}=
Proof: }a=qb+
so a,b and b,r have
the same divisors
```

```
GCD Remainder Lemma
Lemma:
gcd(a,b) = gcd(b, rem(a,b))
for b}\not=
Proof: }a=qb+
any divisor of 2 of these
terms must divide all }3
```

cc) (1) (2)

```
GCD example
    Example: a=899,b=493
    GCD}(899,493)
    GCD}(493,406)
    GCD}(406,87)
    GCD}(87,58)
    GCD(58,29) =
    GCD}(29,0)=2
```

c) © (0)


```
as a State Machine:
States ::= \mathbb{N}\times\mathbb{N}
start ::= (a,b)
state transitions defined by
    (x,y) ->(y,\operatorname{rem}(x,y))
for y}=

Ge.ig GCD partial correctness
By Lemma, \(\operatorname{gcd}(x, y)\) is constant. so preserved invariant is \(P((x, y))::=[\operatorname{gcd}(a, b)=\operatorname{gcd}(x, y)]\)

P (start) is trivially true:
\[
[g c d(a, b)=\operatorname{gcd}(a, b)]
\]
cc) (1) (2) Albert R Meyer

March 6, 2015
GCD Termination
At each transition, \(x\) is replaced
by \(y\). If \(y \leqq x / 2\), then \(x\) gets
halved at this step.
ind

噶蛪 GCD Termination
\(y\) halves or smaller at every other step, so reaches minimum in \(\leq\)
\(2 \log _{2} b\)
steps.

GCD Termination
At each transition, \(x\) is replaced by \(y\). If \(y \leqq x / 2\), then \(x\) gets halved at this step. If \(y>x / 2\), then \(\operatorname{rem}(x, y)=x-y<x / 2\), so \(y\) gets halved when it is replaced by rem \((x, y)\) after the next step.
(c) (1) (2) \(\qquad\) Albert R Meyer March 6, 2015```

