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Arithmetic Assumptions 

assume usual rules for +,⋅, - : 
a (b+c) = ab + ac,  ab = ba, 
(ab)c = a (bc),  a – a = 0, 
a + 0 = a,  a+1 > a, …. 
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The Division Theorem 
    For b > 0 and any a, have 
        q = quotient(a,b) 
        r = remainder(a,b) 
 ∃ unique numbers q, r such that 

a = qb + r   and   0 ≤ r < b. 
Take this for granted too! 
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Divisibility 

c divides a  (c|a) iff          
a = k⋅c  for some k 

5|15 because 15 = 3⋅5 
n|0   because  0 = 0⋅n 
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Simple Divisibility Facts 

•   c|a implies c|(sa) 
[a=k’c implies 
            (sa)=(sk’)c] 
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Simple Divisibility Facts 

•   c|a implies c|(sa) 
•  if c|a and c|b then 

c|(a+b) 
[if a=k1c, b=k2c then 

a+b= (k1+k2)c ] 
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•   c|a implies c|(xa) 
•  if c|a and c|b then 

c|(a+b) 

Simple Divisibility Facts 
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integer linear 
combination of a and b 

(sa+tb) 

c a common divisor of a,b 
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Common Divisors 

Common divisors of a & b 
divide integer linear 
combinations of a & b. 
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GCD 
gcd(a,b) ::= the greatest 
common divisor of a and b 
gcd(10,12) = 2 
gcd(13,12) = 1 
gcd(17,17) = 17 
gcd(0, n)   = n    for n>0 
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GCD 
gcd(a,b) ::= the greatest 
common divisor of a and b 
lemma: p prime implies 

 gcd(p,a) = 1 or p 
proof: The only divisors 
of p are ±1 & ±p. 
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