Mathematics for Computer Science MIT $6.042 \mathrm{~J} / 18.062 \mathrm{~J}$

Number Theory:
 GCD's \& linear combinations

```
The Division Theorem
    For b>0 and any a, have
        q=quotient(a,b)
        r= remainder (a,b)
\exists unique numbers }q,r\mathrm{ such that
    a=qb+r and 0\leqr<b.
    Take this for granted too!None
```

> Take this for granted too!
> The Division Theorem
> For $b>0$ and any a, have
> $q=$ quotient (a, b)
> $r=$ remainder (a, b)
> \exists unique numbers q, r such that
> $a=q b+r$ and $0 \leq r<b$.

2-2
\qquad元
\qquad五

Divisibility
c divides a (c|a) iff $a=k \cdot c$ for some k $5 \mid 15$ because $15=3.5$ $n \mid 0$ because $0=0 \cdot n$

$$
\begin{aligned}
& \text { Arithmetic Assumptions } \\
& \text { assume usual rules for }+,,-: \\
& a(b+c)=a b+a c, a b=b a, \\
& (a b) c=a(b c), a-a=0 \\
& a+0=a, a+1>a, \ldots
\end{aligned}
$$

踢:
c a common divisor of a, b

- if $c \mid a$ and $c \mid b$ then
$c \mid \underbrace{(s a++b)}$
integer linear combination of a and b
(c) © (1) (2)
©

Simple Divisibility Facts

- cla implies c|(sa)
- if $c \mid a$ and $c \mid b$ then

$$
c \mid(a+b)
$$

[if $a=k_{1} c, b=k_{2} c$ then $\left.a+b=\left(k_{1}+k_{2}\right) c\right]$
(c) (1) (2)

Albert R Meyer March 6, 2015

Common Divisors
Common divisors of $a \& b$ divide integer linear combinations of $a \& b$.
\quad GCD
$\operatorname{gcd}(a, b)::=$ the greatest
common divisor of a and b
$\operatorname{gcd}(10,12)=2$
$\operatorname{gcd}(13,12)=1$
$\operatorname{gcd}(17,17)=17$
$\operatorname{gcd}(0, n)=n \quad$ for $n>0$
\quad GCD
gcd $(a, b)::=$ the greatest
common divisor of a and b
lemma: p prime implies
$g c d(p, a)=1$ or p
proof: The only divisors
of p are $\pm 1 \& \pm p$.
.

