

Gambler's Ruin

- Place $\$ 1$ bets until going broke or hitting target
-What is $\operatorname{Pr}[$ hit target]?

Gambling: Fair Case
For fair game in general

$$
\operatorname{Pr}[\text { hit } \$ T]=\frac{n}{T}
$$

What about an unfair game?

US Roulette

What is Pr[hit $\$ 500+100$] starting with $\$ 500$? ($5 / 6$ when fair)
$<1 / 37,000$
What is $\operatorname{Pr}[$ reach $\$ 1 M+100]$ starting with $\$ 1$ M? (≈ 1 when fair)
$<1 / 37,000$
no matter how many \$ at start!

| Gambler's Ruin |
| :--- | :--- |
| Parameters |
| : $:=$ Pr $[$ win $\$ 1$ bet] |
| $n:=$ initial lapital |
| $\mathrm{T}::=$ gambler's target |
| What is Pr[hit target]? |

$$
\begin{aligned}
& \quad \text { A Linear Recurrence } \\
& w_{n+1}=(1 / p) w_{n}-(q / p) w_{n-1} \\
& w_{0}=0 \text { (Gambler is broke) } \\
& w_{T}=1 \text { (Gambler at target) } \\
& \text { Solve as usual and get: }
\end{aligned}
$$

 \(w_{n}::=\operatorname{Pr}[\) hit \(\$ T\) from \(\$ n]\)
 \(\operatorname{Pr}\left[w_{n} \mid\right.\) win \(1^{\text {st }}\) bet \(]=w_{n+1}\)
 \(\operatorname{Pr}\left[w_{n} \mid\right.\) lose \(1^{\text {st }}\) bet \(]=w_{n-1}\)
 \(w_{n}=w_{n+1} \cdot p+w_{n-1} \cdot q\)

Winning when Biased Against

$$
\begin{aligned}
w_{n}=\frac{r^{n}-1}{r^{\top}-1} & <\frac{r^{n}}{r^{\top}} \\
& =\left(\frac{1}{r}\right)^{\text {intended profit }}
\end{aligned}
$$

Suppose $p<q$, so $r::=q / p>1$.

> (1) Winning when Biased Against $w_{n}<(1 / r)^{\text {intended profit }}$ w_{n} bound does not depend on $n!$ $1 / r<1$, so w_{n} is exponentially decreasing in intended profit!

$$
\begin{aligned}
& \text { What About the Fair Case? } \\
& w_{n}=\frac{r^{n}-1}{r^{\top}-1} \quad(r::=q / p=1)
\end{aligned}
$$

Uh oh, dividing by 0 . Use l'Hôpital's Rule

$$
\lim _{r \rightarrow 1} \frac{d\left(r^{n-1}-1\right) / d r}{d\left(r^{T}-1\right) / d r}=\frac{n r^{n-1}}{T r^{T-1}}=\frac{n}{T}
$$

(1)
Claim:
$\operatorname{Pr}[$ ruin $]=1-\operatorname{Pr}[w i n]$
so if we know one, we know
the other.

```
*) ..otherwise Gambler is ruined
```

*) ..otherwise Gambler is ruined
because Pr[play forever] = 0:
because Pr[play forever] = 0:
with any stake
with any stake
Pr[ends in < T bets]> }
Pr[ends in < T bets]> }
So
So
Pr[\geqkT bets] < (1-\varepsilon)

```
    Pr[\geqkT bets ] < (1-\varepsilon)
```

 May 15,2013