Mathematics for Computer Science
MIT 6.042J/18.062J

Proof by Cases: Friends \& Strangers

\section*{| 6 | 9 | 13 | 7 |
| :--- | :--- | :--- | :--- |
| 12 | | 10 | 5 |
 | 12 | | 10 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 |
 | 3 | 1 | 4 | 14 |
| :---: | :---: | :---: | :---: |
| 15 | 8 | 11 | 2 |
 Friends \& Strangers Six people. Every two are either friends or strangers. Claim: there is a set of
 3 mutual friends or
 3 mutual strangers}

ตo․․

 \begin{tabular}{|c|c|c|c|}\hline 3 \& 1 \& 4 \& 14

\hline 15 \& 8 \& 11 \& 2

\hline
\end{tabular}

A Proof of the Claim

- Person o has a line to each of the 5 other people.
- lines are red or blue, so at least 3 must be the same color.
- has ≥ 3 friends

A Proof of the Claim
 ${ }^{90} 9$ ${ }^{3} \cdot 14$

Case 2: no pair of these friends are friends of each other, so we have 3 mutual strangers:

\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 | | 12 | | 10 | 5 |
| :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 | | 3 | 1 | 4 | 14 |
| :---: | :---: | :---: | :---: |
| 15 | 8 | 11 | 2 |
 A Proof of the Claim}

Case 1: some pair of these friends are friends of each other, then we have 3 mutual friends:

\section*{| 6 | 9 | 13 | 7 |
| :--- | :--- | :--- | :--- |
| | | | | | 12 | | 10 | 5 |
| :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 |
 A Proof of the Claim} | 3 | 1 | 4 | 14 |
| :---: | :---: | :---: | :---: |
| 15 | 8 | 11 | 2 |

Since the Claim is true in either case, and one of these cases always holds, the Claim is always true.

QED

\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 |
| 3 | 1 | | |}

Ramsey's Theorem

For any k, every large enough group of people will include either
size-k red clique, or size-k blue clique.
Let $R(k)$ be the large enough size.
So we've proved that $R(3) \leq 6$.

\cdots
 $\frac{12}{12}, 10.5$ $1501{ }^{15} 2$
 Ramsey's Theorem

For any k, every large enough group of people will include either

$$
\begin{aligned}
& \text { size-k red clique, or } \\
& \text { size-k blue clique. }
\end{aligned}
$$

Let $R(k)$ be the large enough size.

$$
\text { In fact, } R(3)=6
$$

(Just show group of $5 \mathrm{w} / \mathrm{o} \Delta, \Delta$)

Ramsey's Numbers

$\frac{12}{12-10} 5$

$\frac{3}{31} 1.4$
Turns out that $R(4)=18$ (not easy!) $R(5)$ is unknown!
Paul Erdös considered finding $R(6)$ a hopeless challenge!

So in our second class, we have reached a research frontier!

