\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 |
| | | 1 | | | 12 | 10 | 5 | |
| :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 |
| | 8 | | | | 15 | 8 | 11 |
| :---: | :---: | :---: | \\ Mathematics for Computer Science \\ MIT 6.042J/18.062J \\ Finite Cardinality}

size of the power set

\# subsets of a finite set A ?
$|\operatorname{pow}(A)| ?$
for $A=\{a, b, c\}, \quad \operatorname{pow}(A)=$
$\{\varnothing, \quad\{a\},\{b\},\{c\}$,
$\{a, b\},\{a, c\},\{b, c\}, \quad\{a, b, c\}\}$

6	9	13	7
12		10	5
			4

12		10	5
3	1	4	14
15	8	11	2

A bijection from
A to B implies
$|A|=|B|$
for finite A, B
pow(A) bijection to bit-strings

\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 |
| | 1 | | | \\ | 12 | | 10 | 5 | |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 | |
| | | | | | | 3 | 1 | 4 | 14 |
| :---: | :---: | :---: | :---: |
| 15 | 8 | 11 | 2 |}

$A:\left\{a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n-1}\right\}$ subset: $\left\{a_{0}, a_{2}, a_{3}, \ldots, a_{n-1}\right\}$ string: $1 \begin{array}{lllllll} & 0 & 1 & 1 & 0 & \ldots & 1\end{array}$
this defines a bijection, so \# n-bit strings = |pow(A)| pow(A) bijection to bit-strings every computer scientis \dagger knows \#n-bit strings, so Corollary:

$$
|\operatorname{pow}(A)|=2|A|
$$

Mapping Rule (surj)

function: $A \rightarrow B$


```
晾煰思 Mapping Rule (surj)
    [ }\leq1\mathrm{ out]:A }->
IMPLIES }|A|\geq\mathrm{ #arrows.
    [\geq1 in] : A->B
IMPLIEs #arrows \geq|||.
```


Mapping Rule（surj）
Surjective function from A to B implies $|A| \geq|B|$ for finite A, B

```
Mal
```



```
Mal
    injection [\leq1 in] IMPLIES
    #arrows \leq | B |

\section*{\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline 3 & & & \\
\hline
\end{tabular} \begin{tabular}{|c|c|c|}
\hline 12 & & 10 \\
\hline 3 & 5 \\
\hline \(\mathbf{3}\) & 1 & 4 \\
\hline
\end{tabular} \\ Total injective relation from \(A\) to \(B\) implies \\ \(|A| \leq|B|\) for finite \(A, B\)}

\section*{\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 \\
\hline 12 & 10 & 7 \\
\hline & & 10 & 5 \\
\hline
\end{tabular} \\ \begin{tabular}{|l|l|l|l|}
\hline 12 & 1 & 5 & \\
\hline 3 & 1 & 4 & 14 \\
\hline & 5 & \\
\hline
\end{tabular} \\ Mapping Lemma \\ \(A\) bij \(B\) IFF \(|A|=|B|\) \\ \(A\) surj \(B\) IFF \(|A| \geq|B|\) \\ \(A\) inj \(B\) IFF \(|A| \leq|B|\) \\ for finite \(A, B\)}
```

"jection" relations
A bij B ::= \existsbijection:A->B
A surj B::= \existssurj func:A->B
A inj B ::= \existstotal inj
relation:A->B

```

```

Ma,
A bij B bij C IMPLIES A bij C
A surj B surj C IMPLIEs A surj C
A surj B surj A ImplIEs A bij B
for finite A, B,C
by the Mapping Lemma

