Final Examination, Unit 1

Your name:

- This exam is closed book except for two 2-sided cribsheets. Total time is 180 minutes.
- Write your solutions in the space provided. If you need more space, write on the back of the sheet containing the problem.
- In answering the following questions, you may use without proof any of the results from class or text.

Problem	Points	Grade	Grader
1	20		
2	15		
3	15		
Total	50		

Problem 1 (Proof by Cases) (20 points).
Define the function

$$
f(x)::=2|x+2|-|x-3|-|x+4|
$$

for real numbers x. Carefully prove that

$$
-7 \leq f(x) \leq 3 \quad \text { for all } x \in \mathbb{R},
$$

using a proof by cases based on the value of x.
Hint: $|x+4|$ equals $x+4$ when $x \geq-4$ and equals $-(x+4)$ when $x \leq-4$. You should have 4 cases.

Problem 2 (Truth Tables and Normal Forms) ($\mathbf{1 5}$ points). (a) Draw a truth table for the formula A implies not $(B$ implies C).

Be sure to show your work.
(b) Use part (a) to write a Full Disjunctive Normal Form that is equivalent to the formula given above. No explanation is required.

Problem 3 (Logical Formulas) (15 points).

Let $Q(x, y)$ be the statement
" x has been a contestant on television show y."
The domain of discourse for x is the set of all students at your school and for y is the set of all quiz shows that have ever been on television.

Indicate which of the following expressions are logically equivalent to the sentence:
"No student at your school has ever been a contestant on a television quiz show."
(a) $\forall x \forall y \cdot \operatorname{NOT}(Q(x, y))$
(b) $\exists x \exists y \cdot \operatorname{NOT}(Q(x, y))$
(c) $\operatorname{NOT}(\forall x \forall y \cdot Q(x, y))$
(d) $\operatorname{NOT}(\exists x \exists y \cdot Q(x, y))$
(e) Write your own logical formula that is equivalent to the statement "No student at your school has been a contestant on two or more television quiz shows." You may use variables y_{1}, y_{2} that both range over the domain of television quiz shows.

