A derived variable, \(v \), is a function assigning a “value” to each state:

\[v: \text{States} \rightarrow \text{Values} \]

If \(\text{Vals} = \mathbb{N} \), say \(v \) is “\(\mathbb{N} \)-valued” or “nonnegative-integer-valued”

Robot on the grid example:
States = \(\mathbb{N}^2 \). Define the sum-value, \(\sigma \), of a state:

\[\sigma(x,y) ::= x+y \]

an \(\mathbb{N} \)-valued derived variable

Called derived to distinguish from actual variables that appear in a program.
For robot Actual: \(x, y \)
Derived: \(\sigma \)
Another derived variable:
\[\pi := \text{parity}(\sigma) \]
\[\pi \text{ is } \{0,1\}-\text{valued} \]

For Fast Exp, have (actual) variable Z. Proof of termination:
Z is strictly decreasing & N-valued

Termination followed by
Well Ordering Principle:
Z must take a least value.
then the algorithm is stuck

Goes down at every step
Weakly Decreasing Variable

Down or constant after each step

Diagonal Robot variables

\(\sigma \): up & down all over the place
neither increasing
nor decreasing

\(\pi \): is constant
both weakly increasing
& weakly decreasing

(We used to call weakly decreasing variables "nonincreasing" variables.)

Caused confusion:
nonincreasing is NOT SAME as "not increasing:"

Albert R. Meyer March 3, 2017
Well ordered sets

Def. A set W of real numbers is well ordered iff it has NO infinite decreasing sequence $w_0 > w_1 > w_2 > \cdots > w_n > \cdots$.

Termination using WOP on \mathbb{N} generalizes to strictly decreasing variables whose values are in any well ordered set.