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Dr. Zachary Abel revised Friday 6th April, 2018, 19:49

In-Class Problems Week 7, Wed.

Problem 1.
Chickens are rather aggressive birds that tend to establish dominance over other chickens by pecking them—
hence the term “pecking order.” So for any two chickens in a farmyard, either the first pecks the second, or
the second pecks the first, but not both. We say that chicken u virtually pecks chicken v if either:

� Chicken u pecks chicken v, or

� Chicken u pecks some other chicken w who in turn pecks chicken v.

A chicken that virtually pecks every other chicken is called a king chicken.
We can model this situation with a chicken digraph whose vertices are chickens, with an edge from

chicken u to chicken v precisely when u pecks v. In the graph in Figure 1, three of the four chickens are
kings. Chicken c is not a king in this example since it does not peck chicken b and it does not peck any
chicken that pecks chicken b. Chicken a is a king since it pecks chicken d , who in turn pecks chickens b
and c.

In general, a tournament digraph is a digraph with exactly one edge between each pair of distinct vertices.
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cd

kingking

king not a king

Figure 1 A 4-chicken tournament in which chickens a, b and d are kings.
.

(a) Define a 10-chicken tournament graph with a king chicken that has outdegree 1.

(b) Describe a 5-chicken tournament graph in which every player is a king.

(c) Prove
Theorem (King Chicken Theorem). Any chicken with maximum out-degree in a tournament is a king.

The King Chicken Theorem means that if the player with the most victories is defeated by another player x,
then at least he/she defeats some third player that defeats x. In this sense, the player with the most victories
has some sort of bragging rights over every other player. Unfortunately, as Figure 1 illustrates, there can be
many other players with such bragging rights, even some with fewer victories.
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2 In-Class Problems Week 7, Wed.
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Figure 2 The 2-bit graph.

Problem 2.
A 3-bit string is a string made up of 3 characters, each a 0 or a 1. Suppose you’d like to write out, in one
string, all eight of the 3-bit strings in any convenient order. For example, if you wrote out the 3-bit strings in
the usual order starting with 000 001 010. . . , you could concatenate them together to get a length 3 � 8 D 24
string that started 000001010. . . .

But you can get a shorter string containing all eight 3-bit strings by starting with 00010. . . . Now 000 is
present as bits 1 through 3, and 001 is present as bits 2 through 4, and 010 is present as bits 3 through 5, . . . .

(a) Say a string is 3-good if it contains every 3-bit string as 3 consecutive bits somewhere in it. Find a
3-good string of length 10, and explain why this is the minimum length for any string that is 3-good.

(b) Explain how any walk that includes every edge in the graph shown in Figure 2 determines a string that
is 3-good. Find the walk in this graph that determines your 3-good string from part (a).

(c) Explain why a walk in the graph of Figure 2 that includes every every edge exactly once provides a
minimum-length 3-good string.1

(d) Generalize the 2-bit graph to a k-bit digraph Bk for k � 2, where V.Bk/ WWD f0; 1g
k , and any walk

through Bk that contains every edge exactly once determines a minimum length .k C 1/-good bit-string.2

What is this minimum length?

Define the transitions of Bk . Verify that the in-degree of each vertex is the same as its out-degree and that
there is a positive length path from any vertex to any other vertex (including itself) of length at most k.

Problem 3.
An Euler tour3 of a graph is a closed walk that includes every edge exactly once. Such walks are named
after the famous 17th century mathematician Leonhard Euler. (Same Euler as for the constant e � 2:718

and the totient function �—he did a lot of stuff.)

1The 3-good strings explained here generalize to n-good strings for n � 3. They were studied by the great Dutch mathemati-
cian/logician Nicolaas de Bruijn, and are known as de Bruijn sequences. de Bruijn died in February, 2012 at the age of 94.

2Problem 10.7 explains why such “Eulerian” paths exist.
3In some other texts, this is called an Euler circuit.

https://courses.csail.mit.edu/6.042/spring18/mcs.pdf#problem.10.7
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So how do you tell in general whether a graph has an Euler tour? At first glance this may seem like a
daunting problem (the similar sounding problem of finding a cycle that touches every vertex exactly once is
one of those million dollar NP-complete problems known as the Hamiltonian Cycle Problem)—but it turns
out to be easy.

(a) Show that if a graph has an Euler tour, then the in-degree of each vertex equals its out-degree.

A digraph is weakly connected if there is a “path” between any two vertices that may follow edges back-
wards or forwards.4 In the remaining parts, we’ll work out the converse. Suppose a graph is weakly con-
nected, and the in-degree of every vertex equals its out-degree. We will show that the graph has an Euler
tour.

A trail is a walk in which each edge occurs at most once.

(b) Suppose that a trail in a weakly connected graph does not include every edge. Explain why there must
be an edge not on the trail that starts or ends at a vertex on the trail.

In the remaining parts, assume the graph is weakly connected, and the in-degree of every vertex equals
its out-degree. Let w be the longest trail in the graph.

(c) Show that if w is closed, then it must be an Euler tour.

Hint: part (b)

(d) Explain why all the edges starting at the end of w must be on w.

(e) Show that if w was not closed, then the in-degree of the end would be bigger than its out-degree.

Hint: part (d)

(f) Conclude that if the in-degree of every vertex equals its out-degree in a finite, weakly connected di-
graph, then the digraph has an Euler tour.

4More precisely, a graph G is weakly connected iff there is a path from any vertex to any other vertex in the graph H with

V.H/ D V.G/; and

E.H/ D E.G/ [ fhv!ui j hu!vi 2 E.G/g:

In other words H D G [G�1.
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