In-Class Problems Week 7, Fri.

Problem 1. (a) Indicate which of the following relations below are equivalence relations, (Eq), strict partial orders (SPO), weak partial orders (WPO). For the partial orders, also indicate whether it is linear (Lin).
If a relation is none of the above, indicate whether it is transitive ($\mathbf{T r}$), symmetric ($\mathbf{S y m}$), or asymmetric (Asym).
(i) The relation $a=b+1$ between integers a, b,
(ii) The superset relation \supseteq on the power set of the integers.
(iii) The empty relation on the set of rationals.
(iv) The divides relation on the nonegative integers \mathbb{N}.
(v) The divides relation on all the integers \mathbb{Z}.
(vi) The divides relation on the positive powers of 4 .
(vii) The relatively prime relation on the nonnegative integers.
(viii) The relation "has the same prime factors" on the integers.
(b) A set of functions $f, g: D \rightarrow \mathbb{R}$ can be partially ordered by the \leq relation, where

$$
[f \leq g]::=\forall d \in D . f(d) \leq g(d)
$$

Let L be the set of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ of the form

$$
f(x)=a x+b
$$

for constants $a, b \in \mathbb{R}$.
Describe an infinite chain and an infinite anti-chain in L.
Hint: Think about parallel lines.

Problem 2.

Let R_{1} and R_{2} be two equivalence relations on a set A. Prove or give a counterexample to the claims that the following are also equivalence relations:
(a) $R_{1} \cap R_{2}$.
(b) $R_{1} \cup R_{2}$.

Problem 3.

Let S be a sequence of n different numbers. A subsequence of S is a sequence that can be obtained by deleting elements of S.

For example, if S is

$$
(6,4,7,9,1,2,5,3,8)
$$

then 647 and 7253 are both subsequences of S (for readability, we have dropped the parentheses and commas in sequences, so 647 abbreviates ($6,4,7$), for example).

An increasing subsequence of S is a subsequence of whose successive elements get larger. For example, 1238 is an increasing subsequence of S. Decreasing subsequences are defined similarly; 641 is a decreasing subsequence of S.
(a) List all the maximum-length increasing subsequences of S, and all the maximum-length decreasing subsequences.

Now let A be the set of numbers in S. (So A is the integers [1..9] for the example above.) There are two straightforward linear orders for A. The first is numerical order where A is ordered by the $<$ relation. The second is to order the elements by which comes first in S; call this order $<_{S}$. So for the example above, we would have

$$
6<_{S} 4<_{S} 7<_{S} 9<_{S} 1<_{S} 2<_{S} 5<_{S} 3<_{S} 8
$$

Let \prec be the product relation of the linear orders $<_{s}$ and $<$. That is, \prec is defined by the rule

$$
a \prec a^{\prime} \quad::=a<a^{\prime} \text { AND } a<S a^{\prime} .
$$

So \prec is a partial order on A (Section 10.9).
(b) Draw a diagram of the partial order \prec on A. What are the maximal and minimal elements?
(c) Explain the connection between increasing and decreasing subsequences of S, and chains and antichains under \prec.
(d) Prove that every sequence S of length n has an increasing subsequence of length greater than \sqrt{n} or a decreasing subsequence of length at least \sqrt{n}.

Supplemental problem:

Problem 4.

For any total function $f: A \rightarrow B$ define a relation \equiv_{f} by the rule:

$$
\begin{equation*}
a \equiv_{f} a^{\prime} \quad \text { iff } \quad f(a)=f\left(a^{\prime}\right) . \tag{1}
\end{equation*}
$$

(a) Sketch a proof that \equiv_{f} is an equivalence relation on A.
(b) Prove that every equivalence relation R on a set A is equal to \equiv_{f} for the function $f: A \rightarrow \operatorname{pow}(A)$ defined as

$$
f(a)::=\left\{a^{\prime} \in A \mid a R a^{\prime}\right\} .
$$

That is, $f(a)=R(a)$.

