In-Class Problems Week 6, Wed.

Problem 1.

Let $\{1,2,3\}^{\omega}$ be the set of infinite sequences containing only the numbers 1,2 , and 3 . For example, some sequences of this kind are:

$$
\begin{aligned}
& \langle 1,1,1,1 \ldots\rangle, \\
& \langle 2,2,2,2 \ldots\rangle, \\
& \langle 3,2,1,3 \ldots\rangle .
\end{aligned}
$$

Give two proofs that $\{1,2,3\}^{\omega}$ is uncountable:
(a) by showing $\{1,2,3\}^{\omega}$ surj S for some known uncountable set S, and
(b) by a direct diagonalization argument.

Problem 2.

You don't really have to go down the diagonal in a "diagonal" argument.
Let's review the historic application of a diagonal argument to one-way infinite sequences

$$
\left\langle e_{0}, e_{1}, e_{2}, \ldots, e_{k}, \ldots\right\rangle
$$

The angle brackets appear above as a reminder that the sequence is not a set: its elements appear in order, and the same element may appear multiple times. ${ }^{1}$

The general setup for a diagonal argument is that we have some sequence S whose elements are themselves one-way infinite sequences. We picture the sequence $S=\left\langle s_{0}, s_{1}, s_{2}, \ldots\right\rangle$ running vertically downward, and each sequence $s_{k} \in S$ running horizontally to the right:

$$
s_{k}=\left\langle s_{k, 0}, s_{k, 1}, s_{k, 2}, \ldots\right\rangle
$$

So we have a 2-D matrix that is infinite down and to the right:

	0	1	2	\ldots	$k \ldots$
s_{0}	$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	\ldots	$s_{0, k} \cdots$
s_{1}	$s_{1,0}$	$s_{1,1}$	$s_{1,2}$	\ldots	$s_{1, k} \cdots$
s_{2}	$s_{2,0}$	$s_{2,1}$	$s_{2,2}$	\ldots	$s_{2, k} \cdots$
\vdots				\vdots	
s_{k}				\ldots	$s_{k . k} \cdots$

[^0]The diagonal argument explains how to find a "new" sequence, that is, a sequence that is not in S. Namely, create the new sequence by going down the diagonal of the matrix and, for each element encountered, add a differing element to the sequence being created. In other words, the diagonal sequence is

$$
D_{S}::=\left\langle\overline{s_{0,0}}, \overline{s_{1,1}}, \overline{s_{2,2}}, \ldots, \overline{s_{k, k}}, \ldots\right\rangle
$$

where \bar{x} indicates some element that is not equal to x. Now D_{S} is a sequence that is not in S because it differs from every sequence in S, namely, it differs from the k th sequence in S at position k.

For definiteness, let's say

$$
\bar{x}::=\left\{\begin{array}{lc}
1 & \text { if } x \neq 1 \\
2 & \text { otherwise }
\end{array}\right.
$$

With this contrivance, we have gotten the diagonal sequence D_{S} to be a sequence of 1's and 2's that is not in S.

But as we said at the beginning, you don't have to go down the diagonal. You could, for example, follow a line with a slope of $-1 / 4$ to get a new sequence

$$
T_{S}::=\left\langle\overline{s_{0,0}}, t_{1}, t_{2}, t_{3}, \overline{s_{1,4}}, t_{5}, t_{6}, t_{7}, \overline{s_{2,8}}, \ldots, t_{4 k-1}, \overline{s_{k, 4 k}}, t_{4 k+1}, \ldots\right\rangle
$$

where the t_{i} 's can be anything at all. Any such T_{s} will be a new sequence because it will differ from every row of the matrix, but this time it differs from the k th row at position $4 k$.
(a) By letting all the t_{i} 's be 2's, we get a new sequence T_{S} of 1's and 2 's whose elements (in the limit) are at least three-quarters equal to 2 . Explain how to find an uncountable number of such sequences of 1 's and 2's.

Hint: Use slope $-1 / 8$ and fill six out of eight places with 2 's. The abbreviation

$$
2^{(n)}::=\underbrace{2,2, \ldots, 2}_{\text {length } n}
$$

for a length- n sequence of 2 's may be helpful, in particular $2^{(6)}$.
(b) Let's say a sequence has a negligible fraction of non-2 elements if, in the limit, it has a fraction of at most ϵ non-2 elements for every $\epsilon>0 .{ }^{2}$ Describe how to define a sequence not in S that has a negligible fraction of non- 2 elements.
(c) Optional: Describe how to find a sequence that differs infinitely many times from every sequence in S. Hint: Divide \mathbb{N} into an infinite number of non-overlapping infinite pieces.

Problem 3.

For any sets A and B, let $[A \rightarrow B]$ be the set of total functions from A to B. Prove that if A is not empty and B has more than one element, then A strict $[A \rightarrow B]$.

Hint: Suppose that σ is a function from A to $[A \rightarrow B]$ mapping each element $a \in A$ to a function $\sigma_{a}: A \rightarrow B$. Suppose $b, c \in B$ and $b \neq c$. Then define

$$
\operatorname{diag}(a)::=\left\{\begin{array}{l}
c \text { if } \sigma_{a}(a)=b, \\
b \text { otherwise. }
\end{array}\right.
$$

[^1]$$
\lim _{n \rightarrow \infty}(\text { number of non- } 2 \mathrm{~s} \text { among the first } n \text { elements }) / n=0 .
$$

Problem 4.

Let

$$
f_{0}, f_{1}, f_{2}, \ldots, f_{k}, \ldots
$$

be an infinite sequence of positive real-valued total functions $f_{k}: \mathbb{N} \rightarrow \mathbb{R}^{+}$.
(a) A function from \mathbb{N} to \mathbb{R} that eventually gets bigger that every one of the f_{k} is said to majorize the set of f_{k} 's. So finding a majorizing function is a different way than diagonalization to find a function that is not equal to any of the f_{k} 's.
Given an explicit formula for a majorizing function $g: \mathbb{N} \rightarrow \mathbb{R}$ for the f_{k} 's, and indicate how big n should be to ensure that $g(n)>f_{k}(n)$.
(b) Modify your answer to part (a), if necessary, to define a majorizing function h that grows more rapidly than f_{k} for every $k \in \mathbb{N}$, namely,

$$
\lim _{n \rightarrow \infty} \frac{f_{k}(n)}{h(n)}=0
$$

Explain why.

Supplemental (Optional)

Problem 5.

There are lots of different sizes of infinite sets. For example, starting with the infinite set \mathbb{N} of nonnegative integers, we can build the infinite sequence of sets

$$
\mathbb{N} \text { strict } \operatorname{pow}(\mathbb{N}) \text { strict } \operatorname{pow}(\operatorname{pow}(\mathbb{N})) \text { strict } \operatorname{pow}(\operatorname{pow}(\operatorname{pow}(\mathbb{N}))) \text { strict } \ldots
$$

where each set is "strictly smaller" than the next one by Theorem 8.1.12. Let $\operatorname{pow}^{n}(\mathbb{N})$ be the nth set in the sequence, and

$$
U::=\bigcup_{n=0}^{\infty} \operatorname{pow}^{n}(\mathbb{N})
$$

(a) Prove that

$$
\begin{equation*}
U \text { surj } \operatorname{pow}^{n}(\mathbb{N}), \tag{1}
\end{equation*}
$$

for all $n>0$.
(b) Prove that

$$
\operatorname{pow}^{n}(\mathbb{N}) \text { strict } U
$$

for all $n \in \mathbb{N}$.
Now of course, we could take $U, \operatorname{pow}(U), \operatorname{pow}(\operatorname{pow}(U)), \ldots$ and keep on in this way building still bigger infinities indefinitely.

[^0]: (c) © © 2017, Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license.
 ${ }^{1}$ The right angle-bracket is not really visible, since the sequence does not have a right end. If such one-way infinite sequences seem worrisome, you can replace them with total functions on \mathbb{N}. So the sequence above simply becomes the function e on \mathbb{N} where $e(n)::=e_{n}$.

[^1]: ${ }^{2}$ In other words, this means

