In-Class Problems Week 6, Wed.

Problem 1.
Let \(\{1, 2, 3\}^\omega \) be the set of infinite sequences containing only the numbers 1, 2, and 3. For example, some sequences of this kind are:

\[
\begin{align*}
\langle 1, 1, 1 \ldots \rangle, \\
\langle 2, 2, 2 \ldots \rangle, \\
\langle 3, 2, 1 \ldots \rangle.
\end{align*}
\]

Give two proofs that \(\{1, 2, 3\}^\omega \) is uncountable:
(a) by showing \(\{1, 2, 3\}^\omega \) surj \(S \) for some known uncountable set \(S \), and
(b) by a direct diagonalization argument.

Problem 2.
You don’t really have to go down the diagonal in a “diagonal” argument.
Let’s review the historic application of a diagonal argument to one-way infinite sequences

\[
\langle e_0, e_1, e_2, \ldots, e_k, \ldots \rangle.
\]

The angle brackets appear above as a reminder that the sequence is not a set: its elements appear in order, and the same element may appear multiple times.\(^1\)

The general setup for a diagonal argument is that we have some sequence \(S \) whose elements are themselves one-way infinite sequences. We picture the sequence \(S = \langle s_0, s_1, s_2, \ldots \rangle \) running vertically downward, and each sequence \(s_k \in S \) running horizontally to the right:

\[
s_k = \langle s_{k,0}, s_{k,1}, s_{k,2}, \ldots \rangle.
\]

So we have a 2-D matrix that is infinite down and to the right:

\[
\begin{array}{cccccc}
0 & 1 & 2 & \ldots & k & \ldots \\
 s_0 & s_{0,0} & s_{0,1} & s_{0,2} & \ldots & s_{0,k} & \ldots \\
 s_1 & s_{1,0} & s_{1,1} & s_{1,2} & \ldots & s_{1,k} & \ldots \\
 s_2 & s_{2,0} & s_{2,1} & s_{2,2} & \ldots & s_{2,k} & \ldots \\
 \vdots & & & & & & \\
 s_k & & & & & & \ldots \end{array}
\]

\(^1\)The right angle-bracket is not really visible, since the sequence does not have a right end. If such one-way infinite sequences seem worrisome, you can replace them with total functions on \(\mathbb{N} \). So the sequence above simply becomes the function \(e(n) := e_n \).
The diagonal argument explains how to find a “new” sequence, that is, a sequence that is not in \(S \). Namely, create the new sequence by going down the diagonal of the matrix and, for each element encountered, add a differing element to the sequence being created. In other words, the diagonal sequence is

\[
D_S := \langle \bar{s}_0, 0, \bar{s}_1, 1, \bar{s}_2, 2, \ldots, \bar{s}_k, k, \ldots \rangle
\]

where \(\bar{x} \) indicates some element that is not equal to \(x \). Now \(D_S \) is a sequence that is not in \(S \) because it differs from every sequence in \(S \), namely, it differs from the \(k \)th sequence in \(S \) at position \(k \).

For definiteness, let’s say\(^1\)

\[
\bar{x} := \begin{cases}
1 & \text{if } x \neq 1, \\
2 & \text{otherwise.}
\end{cases}
\]

With this contrivance, we have gotten the diagonal sequence \(D_S \) to be a sequence of 1’s and 2’s that is not in \(S \).

But as we said at the beginning, you don’t have to go down the diagonal. You could, for example, follow a line with a slope of \(-1/4\) to get a new sequence

\[
T_S := \langle \bar{s}_0, 0, t_1, 1, t_2, 2, \bar{s}_3, 3, t_4, 4, \bar{s}_5, 5, t_6, 6, \bar{s}_7, 7, \ldots, t_{4k-1}, 4k-1, \bar{s}_{4k}, 4k, t_{4k+1}, 4k+1, \ldots \rangle
\]

where the \(t_i \)’s can be anything at all. Any such \(T_S \) will be a new sequence because it will differ from every row of the matrix, but this time it differs from the \(k \)th row at position \(4k \).

(a) By letting all the \(t_i \)’s be 2’s, we get a new sequence \(T_S \) of 1’s and 2’s whose elements (in the limit) are at least three-quarters equal to 2. Explain how to find an uncountable number of such sequences of 1’s and 2’s.

Hint: Use slope \(-1/8\) and fill six out of eight places with 2’s. The abbreviation

\[
2^{(n)} := 2, 2, \ldots, 2
\]

for a length-\(n \) sequence of 2’s may be helpful, in particular \(2^{(6)} \).

(b) Let’s say a sequence has a negligible fraction of non-2 elements if, in the limit, it has a fraction of at most \(\varepsilon \) non-2 elements for *every* \(\varepsilon > 0 \).\(^2\) Describe how to define a sequence not in \(S \) that has a negligible fraction of non-2 elements.

(c) Optional: Describe how to find a sequence that differs infinitely many times from every sequence in \(S \).

Hint: Divide \(\mathbb{N} \) into an infinite number of non-overlapping infinite pieces.

Problem 3.

For any sets \(A \) and \(B \), let \([A \to B]\) be the set of total functions from \(A \) to \(B \). Prove that if \(A \) is not empty and \(B \) has more than one element, then \(A \) strict \([A \to B]\).

Hint: Suppose that \(\sigma \) is a function from \(A \) to \([A \to B]\) mapping each element \(a \in A \) to a function \(\sigma_a : A \to B \). Suppose \(b, c \in B \) and \(b \neq c \). Then define

\[
\text{diag}(a) := \begin{cases}
c & \text{if } \sigma_a(a) = b, \\
b & \text{otherwise.}
\end{cases}
\]

\(^2\)In other words, this means

\[
\lim_{n \to \infty} \frac{\text{(number of non-2s among the first } n \text{ elements)}}{n} = 0.
\]
Problem 4.

Let
\[f_0, f_1, f_2, \ldots, f_k, \ldots \]
be an infinite sequence of positive real-valued total functions \(f_k : \mathbb{N} \to \mathbb{R}^+ \).

(a) A function from \(\mathbb{N} \) to \(\mathbb{R} \) that eventually gets bigger than every one of the \(f_k \) is said to majorize the set of \(f_k \)'s. So finding a majorizing function is a different way than diagonalization to find a function that is not equal to any of the \(f_k \)'s.

Given an explicit formula for a majorizing function \(g : \mathbb{N} \to \mathbb{R} \) for the \(f_k \)'s, and indicate how big \(n \) should be to ensure that \(g(n) > f_k(n) \).

(b) Modify your answer to part (a), if necessary, to define a majorizing function \(h \) that grows more rapidly than \(f_k \) for every \(k \in \mathbb{N} \), namely,
\[
\lim_{n \to \infty} \frac{f_k(n)}{h(n)} = 0.
\]
Explain why.

Supplemental (Optional)

Problem 5.

There are lots of different sizes of infinite sets. For example, starting with the infinite set \(\mathbb{N} \) of nonnegative integers, we can build the infinite sequence of sets
\[
\mathbb{N} \text{ strict } \text{pow}(\mathbb{N}) \text{ strict } \text{pow}(\text{pow}(\mathbb{N})) \text{ strict } \text{pow}(\text{pow}(\text{pow}(\mathbb{N}))) \text{ strict } \ldots
\]
where each set is “strictly smaller” than the next one by Theorem 8.1.12. Let \(\text{pow}^n(\mathbb{N}) \) be the \(n \)th set in the sequence, and
\[
U := \bigcup_{n=0}^{\infty} \text{pow}^n(\mathbb{N}).
\]

(a) Prove that
\[U \text{ surj } \text{pow}^n(\mathbb{N}). \] (1)
for all \(n > 0 \).

(b) Prove that
\[\text{pow}^n(\mathbb{N}) \text{ strict } U \]
for all \(n \in \mathbb{N} \).

Now of course, we could take \(U, \text{pow}(U), \text{pow}(\text{pow}(U)), \ldots \) and keep on in this way building still bigger infinities indefinitely.