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In-Class Problems Week 5, Wed.

Problem 1.
The Elementary 18.01 Functions (F18’s) are the set of functions of one real variable defined recursively as
follows:

Base cases:
e The identity function id(x) ::= x is an F18,
e any constant function is an F18,

e the sine function is an F18,

Constructor cases:
If f, g are F18’s, then so are

1' f + g’ fg7 2g’
2. the inverse function f~1,
3. the composition f o g.

(a) Prove that the function 1/x is an F18.
Warning: Don’t confuse 1/x = x~! with the inverse id~! of the identity function id(x). The inverse id ™"

is equal to id.

(b) Prove by Structural Induction on this definition that the Elementary 18.01 Functions are closed under
taking derivatives. That is, show that if f(x) is an F18, then so is f” ::= df/dx. (Just work out 2 or 3 of
the most interesting constructor cases; you may skip the less interesting ones.)

Problem 2.
Here is a simple recursive definition of the set E of even integers:

Definition. Base case: 0 € E.
Constructor cases: If n € E, thensoare n + 2 and —n.

Provide similar simple recursive definitions of the following sets:
(a) The set S ::= {2¥3™5" ¢ N | k,m,n € N}.
(b) The set T ::= {2k32k+msm+n ¢ N | k. m,n € N}.

(¢) The set L ::={(a,b) € Z? | (a — b) is a multiple of 3}.

Let L’ be the set defined by the recursive definition you gave for L in the previous part. Now if you did it
right, then L’ = L, but maybe you made a mistake. So let’s check that you got the definition right.
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Figure 1 DET 7’ from Four Copies of DET T’
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Figure 2 Subtriangles and “middle” subtriangles

(d) Prove by structural induction on your definition of L’ that

L'CL.
(e) Confirm that you got the definition right by proving that
LclL.
(f) (Optional) See if you can give an unambiguous recursive definition of L.

Problem 3.
Divided Equilateral Triangles (DETs) were defined in an earlier class problem 5.10 as follows:

e Base case: An equilateral triangle with unit length sides is a DET whose only subtriangle is itself.

o If T::= A is a DET, then the equilateral triangle 7" built out of four copies of T" as shown in
Figure 1 is also a DET, and the subtriangles of 7’ are exactly the subtriangles of each of the copies
of T.

Note that “subtriangles” correspond to unit subtriangles as illustrated in Figure 2. The four large triangles
from which a new triangle is made are not subtriangles (unless the side length is two).


https://courses.csail.mit.edu/6.042/spring18/mcs.pdf#problem.5.10
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Figure 3 Trapezoid from Three Triangles

Properties of DETs were proved earlier by induction on the length of a side of the triangle. Recognizing
that the definition of DETs is recursive, we can instead prove properties of DETSs by structural induction.

(a) Prove by structural induction that a DET with one of its corner subtriangles removed can be tiled with
trapezoids built out of three subtriangles as in Figure 3.

(b) Explain why a DET with a middle triangle removed from one side can also be tiled by trapezoids. (If
the side length is even, there are two “middle” subtriangles on each side. The middle subtriangles on the left
hand edge are colored red in Figure 2.)

(¢) In tiling a large square using L-shaped blocks as described in the text, there was a tiling with any
single subsquare removed. Part (b) indicates that trapezoid-tilings are possible for DETs with a non-corner
subtriangle removed, so it’s natural to make the mistaken guess that DETs have a corresponding property:
False Claim. A DET with any single subtriangle removed can be trapezoid-tiled.

We can try to prove the claim by structural induction as in part (a).

Bogus proof. The claim holds vacuously in the base case of a DET with a single subtriangle.

Now let 77 be a DET made of four copies of a DET T, and suppose we remove an arbitrary subtriangle
from 7.

The removed subtriangle must be a subtriangle of one of the copies of T'. The copies are the same, so for
definiteness we assume the subtriangle was removed from copy 1. Then by structural induction hypothesis,
copy 1 can be trapezoid-tiled, and then the other three copies of 7' can be trapezoid-tiled exactly as in the
solution to part(a). This yields a complete trapezoid-tiling of 7”7 with the arbitrary subtriangle removed.

We conclude by structural induction that any DET with any subtriangle removed can be trapezoid-tiled. W

What’s wrong with the proof?
Hint: Find a counter-example, and show where the proof breaks down.

(We don’t know if there is a simple characterization of exactly which subtriangles can be removed to allow
a trapezoid tiling.)

Problem 4.
We’re going to characterize a large category of games as a recursive data type and then prove, by structural
induction, a fundamental theorem about game strategies. We are interested in two person games of perfect
information that end with a numerical score. Chess and Checkers would count as value games using the
values 1, —1, 0 for a win, loss or draw for the first player. The game of Go really does end with a score based
on the number of white and black stones that remain at the end.

Here’s the formal definition:

Definition. Let IV be a nonempty set of real numbers. The class VG of V -valued two-person deterministic
games of perfect information is defined recursively as follows:
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Base case: A value v € V is a VG known as a payoff.

Constructor case: If G is a nonempty set of VG’s, then G is a VG. Each game M € G is called a possible
first move of G.

A strategy for a player is a rule that tells the player which move to make whenever it is their turn. That
is, a strategy is a function s from games to games with the property that s(G) € G for all games G. Given
which player has the first move, a pair of strategies for the two players determines exactly which moves the
players will choose. So the strategies determine a unique play of the game and a unique payoft.'

The max-player wants a strategy that guarantees as high a payoff as possible, and the min-player wants a
strategy that guarantees as low a payoff as possible.

The Fundamental Theorem for deterministic games of perfect information says that in any game, each
player has an optimal strategy, and these strategies lead to the same payoff. More precisely,

Theorem (Fundamental Theorem for VG’s). Let V be a finite set of real numbers and G be a V -valued VG.
Then there is a value v € V, called a max-value maxg for G, such that if the max-player moves first,

o the max-player has a strategy that will finish with a payoff of at least maxg, no matter what strategy
the min-player uses, and

o the min-player has a strategy that will finish with a payoff of at most maxg, no matter what strategy
the max-player uses.

It’s worth a moment for the reader to observe that the definition of maxg implies that if there is one for
G, it is unique. So if the max-player has the first move, the Fundamental Theorem means that there’s no
point in playing the game: the min-player may just as well pay the max-value to the max-player.

(a) Prove the Fundamental Theorem for VG’s.
Hint: VG’s are a recursively defined data type, so the basic method for proving that all VG’s have some

property is structural induction on the definition of VG. Since the min-player moves first in whichever game
the max-player picks for their first move, the induction hypothesis will need to cover that case as well.

(b) (OPTIONAL). State some reasonable generalization of the Fundamental Theorem to games with an
infinite set V' of possible payoffs.

'We take for granted the fact that no VG has an infinite play. The proof of this by structural induction is essentially the same as
that for win-lose games given in the text.
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