In-Class Problems Week 5, Fri.

Problem 1.

Definition. The recursive data type binary-2PG of binary trees with leaf labels L is defined recursively as follows:

- Base case: \langle leaf, $l\rangle \in$ binary-2PG, for all labels $l \in L$.
- Constructor case: If $G_{1}, G_{2} \in$ binary-2PG, then

$$
\left\langle\text { bintree, } G_{1}, G_{2}\right\rangle \in \text { binary-2PG. }
$$

The size $|G|$ of $G \in$ binary-2PG is defined recursively on this definition by:

- Base case:

$$
\mid\langle\text { leaf, } l\rangle \mid::=1, \quad \text { for all } l \in L .
$$

- Constructor case:

$$
\mid\left\langle\text { bintree, } G_{1}, G_{2}\right\rangle\left|::=\left|G_{1}\right|+\left|G_{2}\right|+1 .\right.
$$

For example, the size of the binary-2PG G pictured in Figure 1, is 7.

Figure 1 A picture of a binary tree G.

[^0](a) Write out (using angle brackets and labels bintree, leaf, etc.) the binary-2PG G pictured in Figure 1.

The value of flatten (G) for $G \in$ binary-2PG is the sequence of labels in L of the leaves of G. For example, for the binary-2PG G pictured in Figure 1,

$$
\text { flatten }(G)=(\text { win, lose, win, win }) .
$$

(b) Give a recursive definition of flatten. (You may use the operation of concatenation (append) of two sequences.)
(c) Prove by structural induction on the definitions of flatten and size that

$$
\begin{equation*}
2 \cdot \text { length }(\text { flatten }(G))=|G|+1 \tag{1}
\end{equation*}
$$

Problem 2.

For $T \in \mathrm{BBTr}$, define

$$
\begin{aligned}
& \text { leaves }(T): \\
& \operatorname{internal}(T):: \\
&=\{S \in \operatorname{Subtrs}(T)|S \in \operatorname{Subtrs}(T)| S \in \operatorname{Branching}\} .
\end{aligned}
$$

(a) Explain why it follows immediately from the definitions that if $T \in$ Branching,

$$
\begin{aligned}
\operatorname{internal}(T) & =\{T\} \cup \operatorname{internal}(\operatorname{left}(T)) \cup \operatorname{internal}(\operatorname{right}(T)), \\
\operatorname{leaves}(T) & =\operatorname{leaves}(\operatorname{left}(T)) \cup \operatorname{leaves}(\operatorname{right}(T)) .
\end{aligned}
$$

(b) Prove by structural induction on the definition of RecTr that in a recursive tree, there is always one more leaf than there are internal subtrees:
Lemma. If $T \in \operatorname{RecTr}$, then

$$
\begin{equation*}
|\operatorname{leaves}(T)|=1+|\operatorname{internal}(T)| . \tag{lf-vs-in}
\end{equation*}
$$

Problem 3.

Definition. Define the sharing binary trees SharTr recursively:
Base case: ($T \in$ Leaves). $T \in$ SharTr.
Constructor case: ($T \in \operatorname{Branching})$. If left (T), $\operatorname{right}(T) \in \operatorname{SharTr}$, then T is in SharTr.
(a) Prove size (T) is finite for every $T \in \operatorname{SharTr}$.
(b) Give an example of a finite $T \in \mathrm{BBTr}$ that has an infinite path.
(c) Prove that for all $T \in \mathrm{BBTr}$

$$
T \in \operatorname{Shar} \operatorname{Tr} \longleftrightarrow T \text { has no infinite path. }
$$

(d) Give an example of a tree $T_{3} \in \mathrm{BBTr}$ with three branching subtrees and one leaf.
(e) Prove that

Lemma. If $T \in$ SharTr, then

$$
|\operatorname{leaves}(T)| \leq 1+|\operatorname{internal}(T)| .
$$

Hint: Show that for every $T \in \operatorname{SharTr}$, there is a recursive tree $R \in \operatorname{RecTr}$ with the same number of internal subtrees and at least as many leaves.

Problem 4. (a) Edit the labels in this size 15 tree T so it becomes a search tree for the set of labels [1..15].

(b) For any recursive tree and set of labels, there is only one way to assign labels to make the tree a search tree. More precisely, let num : $\operatorname{RecTr} \rightarrow \mathbb{R}$ be a labelling function on the recursive binary trees, and suppose T is a search tree under this labelling. Suppose that num ${ }_{\text {alt }}$ is another labelling and that T is also a search tree under num alt for the same set of labels. Prove by structural induction on the definition of search tree that

$$
\begin{equation*}
\operatorname{num}(S)=\operatorname{num}_{\operatorname{alt}}(S) \tag{same}
\end{equation*}
$$

for all subtrees $S \in \operatorname{Subtrs}(T)$.
Reminder:
Definition. The Search trees $T \in \operatorname{BBTr}$ are defined recursively as follows:
Base case: ($T \in$ Leaves). T is a Search tree.
Constructor case: $(T \in \operatorname{Branching})$. If left (T) and $\operatorname{right}(T)$ are both Search trees, and

$$
\max (\operatorname{left}(T))<\operatorname{num}(T)<\min (\operatorname{right}(T)),
$$

then T is a Search tree.

[^0]: © © © ©
 2017, Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license.

