Massachusetts Institute of Technology
6.042]/18.062], Spring ’18: Mathematics for Computer Science March 9
Dr. Zachary Abel revised Friday 6 April, 2018, 19:48

In-Class Problems Week 5, Fri.

Problem 1.
Definition. The recursive data type binary-2PG of binary trees with leaf labels L is defined recursively as
follows:

e Base case: (1eaf,/) € binary-2PG, for all labels / € L.

e Constructor case: If G, G, € binary-2PG, then

(bintree, G, Gy) € binary-2PG.

The size |G| of G € binary-2PG is defined recursively on this definition by:

e Base case:
| (leaf,l)| =1, foralll € L.

e Constructor case:
| (bintree, G1,Gy) | = |G1| + |G| + 1.

For example, the size of the binary-2PG G pictured in Figure 1, is 7.

lose win

Figure 1 A picture of a binary tree G.

2017, Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0
license.

http://web.mit.edu/
https://stellar.mit.edu/S/course/6/sp18/6.042
http://zacharyabel.com
http://creativecommons.org/licenses/by-sa/3.0/
http://people.csail.mit.edu/meyer
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

2 In-Class Problems Week 5, Fri.

(a) Write out (using angle brackets and labels bintree, leaf, etc.) the binary-2PG G pictured in
Figure 1.

The value of flatten(G) for G € binary-2PG is the sequence of labels in L of the leaves of G. For
example, for the binary-2PG G pictured in Figure 1,

flatten(G) = (win, lose,win,win).

(b) Give a recursive definition of flatten. (You may use the operation of concatenation (append) of two
sequences.)

(c) Prove by structural induction on the definitions of flatten and size that

2 - length(flatten(G)) = |G| + 1. (1)

Problem 2.
For T € BBTr, define

leaves(T') ::={S € Subtrs(T') | S € Leaves}
internal(7") ::= {S € Subtrs(T") | S € Branching}.

(a) Explain why it follows immediately from the definitions that if 7" € Branching,

internal(7") = {T} U internal(left(7")) U internal (right(7")), (trnlT)
leaves(T') = leaves(left(7")) U leaves(right(7)). (IvT)

(b) Prove by structural induction on the definition of RecTr that in a recursive tree, there is always one
more leaf than there are internal subtrees:
Lemma. If T € RecTr, then

|leaves(T)| = 1 + |internal(T)]|. (If-vs-in)

Problem 3.

Definition. Define the sharing binary trees SharTr recursively:
Base case: (T € Leaves). T € SharTr.

Constructor case: (7' € Branching). If left(7"), right(7") € SharTr, then 7 is in SharTr.
(a) Prove size (T) is finite for every T € SharTr.

(b) Give an example of a finite 7" € BBTr that has an infinite path.

(¢) Prove that for all T € BBTr

T € SharTr «<— T has no infinite path.

(d) Give an example of a tree 73 € BBTr with three branching subtrees and one leaf.

(e) Prove that
Lemma. If T € SharTr, then
|leaves(T)| < 1 + |internal(T)|.

In-Class Problems Week 5, Fri. 3

Hint: Show that for every 7' € SharTr, there is a recursive tree R € RecTr with the same number of internal
subtrees and at least as many leaves.

Problem 4. (a) Edit the labels in this size 15 tree T so it becomes a search tree for the set of labels [1..15].

T
/ A\
/N
/ \
/ \
A B
/ A\ /N
/N /N
/ \ / \
C D E F
/ A\ / A\ / A\
/N /N /N
G HI J K L
/ N\
M N

(b) For any recursive tree and set of labels, there is only one way to assign labels to make the tree a search
tree. More precisely, let num : RecTr — R be a labelling function on the recursive binary trees, and suppose
T is a search tree under this labelling. Suppose that numyy is another labelling and that 7" is also a search
tree under num,y for the same set of labels. Prove by structural induction on the definition of search tree
that

num(.S) = numy(S) (same)
for all subtrees S € Subtrs(7).

Reminder:
Definition. The Search trees T € BBTr are defined recursively as follows:

Base case: (T € Leaves). T is a Search tree.
Constructor case: (T € Branching). If left(7T) and right(7') are both Search trees, and
max(left(7T)) < num(7") < min(right(7)),

then T is a Search tree.

	Problem 1
	Problem 2
	Problem 3
	Problem 4

