
“cp5f” — 2018/4/6 — 19:48 — page 1 — #1

Massachusetts Institute of Technology
6.042J/18.062J, Spring ’18: Mathematics for Computer Science March 9
Dr. Zachary Abel revised Friday 6th April, 2018, 19:48

In-Class Problems Week 5, Fri.

Problem 1.

Definition. The recursive data type binary-2PG of binary trees with leaf labels L is defined recursively as
follows:

� Base case: hleaf; li 2 binary-2PG, for all labels l 2 L.

� Constructor case: If G1; G2 2 binary-2PG, then

hbintree; G1; G2i 2 binary-2PG:

The size jGj of G 2 binary-2PG is defined recursively on this definition by:

� Base case:
j hleaf; li j WWD 1; for all l 2 L:

� Constructor case:
j hbintree; G1; G2i j WWD jG1j C jG2j C 1:

For example, the size of the binary-2PG G pictured in Figure 1, is 7.

G

G11 win

G1,2win

lose win

Figure 1 A picture of a binary tree G.

2017, Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0
license.

http://web.mit.edu/
https://stellar.mit.edu/S/course/6/sp18/6.042
http://zacharyabel.com
http://creativecommons.org/licenses/by-sa/3.0/
http://people.csail.mit.edu/meyer
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

“cp5f” — 2018/4/6 — 19:48 — page 2 — #2

2 In-Class Problems Week 5, Fri.

(a) Write out (using angle brackets and labels bintree, leaf, etc.) the binary-2PG G pictured in
Figure 1.

The value of flatten.G/ for G 2 binary-2PG is the sequence of labels in L of the leaves of G. For
example, for the binary-2PG G pictured in Figure 1,

flatten.G/ D .win;lose;win;win/:

(b) Give a recursive definition of flatten. (You may use the operation of concatenation (append) of two
sequences.)

(c) Prove by structural induction on the definitions of flatten and size that

2 � length.flatten.G// D jGj C 1: (1)

Problem 2.
For T 2 BBTr, define

leaves.T / WWD fS 2 Subtrs.T / j S 2 Leavesg

internal.T / WWD fS 2 Subtrs.T / j S 2 Branchingg:

(a) Explain why it follows immediately from the definitions that if T 2 Branching,

internal.T / D fT g [internal.left.T // [internal.right.T //; (trnlT)

leaves.T / D leaves.left.T // [leaves.right.T //: (lvT)

(b) Prove by structural induction on the definition of RecTr that in a recursive tree, there is always one
more leaf than there are internal subtrees:
Lemma. If T 2 RecTr, then

jleaves.T /j D 1C jinternal.T /j: (lf-vs-in)

Problem 3.

Definition. Define the sharing binary trees SharTr recursively:

Base case: (T 2 Leaves). T 2 SharTr.

Constructor case: (T 2 Branching). If left.T /; right.T / 2 SharTr, then T is in SharTr.

(a) Prove size .T / is finite for every T 2 SharTr.

(b) Give an example of a finite T 2 BBTr that has an infinite path.

(c) Prove that for all T 2 BBTr

T 2 SharTr ! T has no infinite path:

(d) Give an example of a tree T3 2 BBTr with three branching subtrees and one leaf.

(e) Prove that
Lemma. If T 2 SharTr, then

jleaves.T /j � 1C jinternal.T /j:

“cp5f” — 2018/4/6 — 19:48 — page 3 — #3

In-Class Problems Week 5, Fri. 3

Hint: Show that for every T 2 SharTr, there is a recursive tree R 2 RecTr with the same number of internal
subtrees and at least as many leaves.

Problem 4. (a) Edit the labels in this size 15 tree T so it becomes a search tree for the set of labels Œ1::15�.

T
/ \
/ \

/ \
/ \

A B
/ \ / \

/ \ / \
/ \ / \

C D E F
/ \ / \ / \

/ \ / \ / \
G H I J K L

/ \
M N

(b) For any recursive tree and set of labels, there is only one way to assign labels to make the tree a search
tree. More precisely, let num W RecTr! R be a labelling function on the recursive binary trees, and suppose
T is a search tree under this labelling. Suppose that numalt is another labelling and that T is also a search
tree under numalt for the same set of labels. Prove by structural induction on the definition of search tree
that

num.S/ D numalt.S/ (same)

for all subtrees S 2 Subtrs.T /.

Reminder:
Definition. The Search trees T 2 BBTr are defined recursively as follows:

Base case: (T 2 Leaves). T is a Search tree.

Constructor case: (T 2 Branching). If left.T / and right.T / are both Search trees, and

max.left.T // < num.T / < min.right.T //;

then T is a Search tree.

	Problem 1
	Problem 2
	Problem 3
	Problem 4

