In-Class Problems Week 5, Fri.

Problem 1.

Definition. The recursive data type binary-2PG of *binary trees* with leaf labels *L* is defined recursively as follows:

- **Base case:** $(leaf, l) \in binary-2PG$, for all labels $l \in L$.
- Constructor case: If $G_1, G_2 \in \text{binary-2PG}$, then

$$\langle \text{bintree}, G_1, G_2 \rangle \in \text{binary-2PG}.$$

The size |G| of $G \in$ binary-2PG is defined recursively on this definition by:

• Base case:

 $|\langle \text{leaf}, l \rangle| ::= 1$, for all $l \in L$.

• Constructor case:

 $|\langle \text{bintree}, G_1, G_2 \rangle| ::= |G_1| + |G_2| + 1.$

For example, the size of the binary-2PG G pictured in Figure 1, is 7.

Figure 1 A picture of a binary tree G.

^{2017,} Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license.

(a) Write out (using angle brackets and labels bintree, leaf, etc.) the binary-2PG G pictured in Figure 1.

The value of flatten(G) for $G \in \text{binary-2PG}$ is the sequence of labels in L of the leaves of G. For example, for the binary-2PG G pictured in Figure 1,

$$flatten(G) = (win, lose, win, win).$$

(b) Give a recursive definition of flatten. (You may use the operation of *concatenation* (append) of two sequences.)

(c) Prove by structural induction on the definitions of flatten and size that

$$2 \cdot \text{length}(\text{flatten}(G)) = |G| + 1. \tag{1}$$

Problem 2.

For $T \in BBTr$, define

$$leaves(T) ::= \{S \in Subtrs(T) \mid S \in Leaves\}$$
$$internal(T) ::= \{S \in Subtrs(T) \mid S \in Branching\}.$$

(a) Explain why it follows immediately from the definitions that if $T \in$ Branching,

$$internal(T) = \{T\} \cup internal(left(T)) \cup internal(right(T)),$$
(trnlT)
$$leaves(T) = leaves(left(T)) \cup leaves(right(T)).$$
(lvT)

(b) Prove by structural induction on the definition of RecTr that in a recursive tree, there is always one more leaf than there are internal subtrees:

Lemma. If $T \in RecTr$, then

$$|leaves(T)| = 1 + |internal(T)|.$$
 (lf-vs-in)

Problem 3.

Definition. Define the *sharing binary trees* SharTr recursively:

Base case: $(T \in \text{Leaves})$. $T \in \text{SharTr}$.

Constructor case: $(T \in \text{Branching})$. If left(*T*), right(*T*) \in SharTr, then *T* is in SharTr.

(a) Prove size (T) is finite for every $T \in$ SharTr.

(b) Give an example of a finite $T \in BBTr$ that has an infinite path.

(c) Prove that for all $T \in BBTr$

 $T \in \text{SharTr} \longleftrightarrow T$ has no infinite path.

(d) Give an example of a tree $T_3 \in BBTr$ with three branching subtrees and one leaf.

(e) Prove that **Lemma.** If $T \in SharTr$, then

 $|leaves(T)| \leq 1 + |internal(T)|.$

Hint: Show that for every $T \in$ SharTr, there is a recursive tree $R \in$ RecTr with the same number of internal subtrees and at least as many leaves.

Problem 4. (a) Edit the labels in this size 15 tree T so it becomes a search tree for the set of labels [1..15].

(b) For any recursive tree and set of labels, there is only one way to assign labels to make the tree a search tree. More precisely, let num : RecTr $\rightarrow \mathbb{R}$ be a labelling function on the recursive binary trees, and suppose *T* is a search tree under this labelling. Suppose that num_{alt} is another labelling and that *T* is also a search tree under num_{alt} for the *same* set of labels. Prove by structural induction on the definition of search tree that

$$\operatorname{num}(S) = \operatorname{num}_{\operatorname{alt}}(S) \tag{same}$$

for all subtrees $S \in \text{Subtrs}(T)$.

Reminder:

Definition. The Search trees $T \in BBTr$ are defined recursively as follows:

Base case: $(T \in \text{Leaves})$. *T* is a Search tree.

Constructor case: $(T \in \text{Branching})$. If left(*T*) and right(*T*) are both Search trees, and

 $\max(\operatorname{left}(T)) < \operatorname{num}(T) < \min(\operatorname{right}(T)),$

then T is a Search tree.