In-Class Problems Week 4, Mon.

Problem 1.
The inverse R^{-1} of a binary relation R from A to B is the relation from B to A defined by:

$$b \, R^{-1} \, a \iff a \, R \, b.$$

In other words, you get the diagram for R^{-1} from R by “reversing the arrows” in the diagram describing R. Now many of the relational properties of R correspond to different properties of R^{-1}. For example, R is total iff R^{-1} is a surjection.

Fill in the remaining entries in this table:

<table>
<thead>
<tr>
<th>R is</th>
<th>R^{-1} is</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>a surjection</td>
</tr>
<tr>
<td>a function</td>
<td></td>
</tr>
<tr>
<td>a surjection</td>
<td></td>
</tr>
<tr>
<td>an injection</td>
<td></td>
</tr>
<tr>
<td>a bijection</td>
<td></td>
</tr>
</tbody>
</table>

Hint: Explain what’s going on in terms of “arrows” from A to B in the diagram for R.

Arrow Properties

Definition. A binary relation, R is

- a *function* when it has the $[\leq 1 \text{ arrow out}]$ property.
- a *surjective* when it has the $[\geq 1 \text{ arrows in}]$ property. That is, every point in the right-hand, codomain column has at least one arrow pointing to it.
- a *total* when it has the $[\geq 1 \text{ arrows out}]$ property.
- a *injective* when it has the $[\leq 1 \text{ arrow in}]$ property.
- a *bijective* when it has both the $[\leq 1 \text{ arrow out}]$ and the $[\geq 1 \text{ arrow in}]$ property.

Problem 2.
Assume $f : A \to B$ is total function, and A is finite. Replace the \ast with one of $\leq, =, \geq$ to produce the strongest correct version of the following statements:

(a) $|f(A)| \ast |B|$.

(b) If f is a surjection, then $|A| \ast |B|$.

(c) If f is a surjection, then $|f(A)| \ast |B|$.
(d) If f is an injection, then $|f(A)| \star |A|$.

(e) If f is a bijection, then $|A| \star |B|$.

Problem 3.

Let $R : A \rightarrow B$ be a binary relation. Use an arrow counting argument to prove the following generalization of the Mapping Rule 1.

Lemma. If R is a function, and $X \subseteq A$, then

$$|X| \geq |R(X)|.$$

Problem 4.

Let $A = \{a_0, a_1, \ldots, a_{n-1}\}$ be a set of size n, and $B = \{b_0, b_1, \ldots, b_{m-1}\}$ a set of size m. Prove that $|A \times B| = mn$ by defining a simple bijection from $A \times B$ to the nonnegative integers from 0 to $mn - 1$.

Problem 5. (a) Prove that if $A \text{ surj } B$ and $B \text{ surj } C$, then $A \text{ surj } C$.

(b) Explain why $A \text{ surj } B$ iff $B \text{ inj } A$.

(c) Conclude from (a) and (b) that if $A \text{ inj } B$ and $B \text{ inj } C$, then $A \text{ inj } C$.

(d) According to the official definition, $A \text{ inj } B$ requires a total injective relation ($[\geq 1 \text{ out}, \leq 1 \text{ in}]$). Explain why $A \text{ inj } B$ iff there is a total injective function ($[[= 1 \text{ out}, \leq 1 \text{ in}])$ from A to B.