In-Class Problems Week 4, Mon.

Problem 1.

The inverse R^{-1} of a binary relation R from A to B is the relation from B to A defined by:

$$
b R^{-1} a \text { iff } a R b .
$$

In other words, you get the diagram for R^{-1} from R by "reversing the arrows" in the diagram describing R. Now many of the relational properties of R correspond to different properties of R^{-1}. For example, R is total iff R^{-1} is a surjection.

Fill in the remaining entries is this table:

R is	iff	R^{-1} is
total		a surjection
a function		
a surjection		
an injection		
a bijection		

Hint: Explain what's going on in terms of "arrows" from A to B in the diagram for R.

Arrow Properties

Definition. A binary relation, R is

- is a function when it has the [≤ 1 arrow out] property.
- is surjective when it has the $[\geq 1$ arrows in] property. That is, every point in the right-hand, codomain column has at least one arrow pointing to it.
- is total when it has the [≥ 1 arrows out] property.
- is injective when it has the [≤ 1 arrow in] property.
- is bijective when it has both the $[=1$ arrow out $]$ and the $[=1$ arrow in $]$ property.

Problem 2.

Assume $f: A \rightarrow B$ is total function, and A is finite. Replace the \star with one of $\leq,=, \geq$ to produce the strongest correct version of the following statements:
(a) $|f(A)| \star|B|$.
(b) If f is a surjection, then $|A| \star|B|$.
(c) If f is a surjection, then $|f(A)| \star|B|$.
(d) If f is an injection, then $|f(A)| \star|A|$.
(e) If f is a bijection, then $|A| \star|B|$.

Problem 3.

Let $R: A \rightarrow B$ be a binary relation. Use an arrow counting argument to prove the following generalization of the Mapping Rule 1.

Lemma. If R is a function, and $X \subseteq A$, then

$$
|X| \geq|R(X)| .
$$

Problem 4.

Let $A=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$ be a set of size n, and $B=\left\{b_{0}, b_{1}, \ldots, b_{m-1}\right\}$ a set of size m. Prove that $|A \times B|=m n$ by defining a simple bijection from $A \times B$ to the nonnegative integers from 0 to $m n-1$.

Problem 5. (a) Prove that if $A \operatorname{surj} B$ and B surj C, then A surj C.
(b) Explain why $A \operatorname{surj} B$ iff $B \operatorname{inj} A$.
(c) Conclude from (a) and (b) that if $A \operatorname{inj} B$ and $B \operatorname{inj} C$, then $A \operatorname{inj} C$.
(d) According to the official definition, A inj B requires a total injective relation ($[\geq 1$ out, $\leq 1 \mathrm{in}]$). Explain why A inj B iff there is a total injective function ($[=1$ out, $\leq 1 \mathrm{in}]$) from A to B.

