
“cp3t” — 2018/4/6 — 19:48 — page 1 — #1

Massachusetts Institute of Technology
6.042J/18.062J, Spring ’18: Mathematics for Computer Science February 20
Dr. Zachary Abel revised Friday 6th April, 2018, 19:48

In-Class Problems Week 3, Tue.

Problem 1.
In this problem we’ll examine predicate logic formulas where the domain of discourse is N. In addition to
the logical symbols, the formulas may contain ternary predicate symbols A and M , where

A.k; m; n/ means k D mC n;

M.k; m; n/ means k D m � n:

For example, a formula “Zero.n/” meaning that n is zero could be defined as

Zero.n/ WWD A.n; n; n/:

Having defined “Zero,” it is now OK to use it in subsequent formulas. So a formula “Greater.m; n/” meaning
m > n could be defined as

Greater.m; n/ WWD 9k: NOT.Zero.k// AND A.m; n; k/:

This makes it OK to use “Greater” in subsequent formulas.
Write predicate logic formulas using only the allowed predicates A; M that define the following predi-

cates:

(a) Equal.m; n/ meaning that m D n.

(b) One.n/ meaning that n D 1.

(c) n D i.m � j C k2/

(d) Prime.p/ meaning p is a prime number.

(e) Two.n/ meaning that n D 2.

The results of part (e) will entend to formulas Three.n/; Four.n/; Five.n/; : : : which are allowed from
now on.

(f) Even.n/ meaning n is even.

(g) (Goldbach Conjecture) Every even integer n � 4 can be expressed as the sum of two primes.

(h) (Twin Prime Conjecture) There are infinitely many primes that differ by two.

Problem 2.
If the names of procedures or their parameters are used in separate places, it doesn’t really matter if the same
variable name happens to be appear, and it’s always safe to change a “local” name to something brand new.
The same thing happens in predicate formulas.

2017, Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0
license.

http://web.mit.edu/
https://stellar.mit.edu/S/course/6/sp18/6.042
http://zacharyabel.com
http://creativecommons.org/licenses/by-sa/3.0/
http://people.csail.mit.edu/meyer
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/


“cp3t” — 2018/4/6 — 19:48 — page 2 — #2

2 In-Class Problems Week 3, Tue.

For example, we can rename the variable x in “8x:P.x/” to be “y” to obtain 8y:P.y/ and these two
formulas are equivalent. So a formula like

.8x:P.x// AND .8x:Q.x// (1)

can be rewritten as the equivalent formula

.8y:P.y// AND .8x:Q.x//; (2)

which more clearly shows that the separate occurrences of 8x in (1) are unrelated.
Renaming variables in this way allows every predicate formula to be converted into an equivalent formula

in which every variable name is used in only one way. Specifically, a predicate formula satisfies the unique
variable convention if

� for every variable x, there is at most one quantified occurrence of x, that is, at most one occurrence
of either “8x” or “9x,” and moreover, “8x” and “9x” don’t both occur, and

� if there is a subformula of the form 8x:F or the form 9x:F , then all the occurrences of x that appear
anywhere in the whole formula are within the formula F .

So formula (1) violates the unique variable convention because “8x” occurs twice, but formula (2) is OK.
A further example is the formula

Œ8x 9y: P.x/ AND Q.x; y/� IMPLIES (3)

.9x: R.x; z// OR 9x 8z: S.x; y; w; z/:

Formula (3) violates the unique variable convention because there are three quantified occurrences of x

in the formula, namely, the initial “8x” and then two occurrences of “9x” later. It violates the convention in
others ways as well. For instance, there is an occurrence of y that is not inside the subformula 9y: P.x/ AND

Q.y/.
It turns out that every predicate formula can be changed into an equivalent formula that satisfies the unique

variable convention—just by renaming some of the occurrences of its variables, as we did when we renamed
the first two occurrences of x in (1) into y’s to obtain the equivalent formula (2).

Rename occurrences of variables in (3) to obtain an equivalent formula that satisfies the unique variable
convention. Try to rename as few occurrences as possible.

A general procedure for converting a predicate formula into unique variable format is described in Prob-
lem 7.32.

Problem 3.
Let 0̃ be a constant symbol, next and prev be function symbols taking one argument.

We can picture any model for these symbols by representing domain elements as points. The model must
interpret 0̃ as some point e0. It also interprets the symbols next and prev as total functions nextf and prevf
on the domain. We can picture the functions by having an arrow labelled next go out from each point e into
the point nextf.e/, and an arrow labelled prev go out from each e into prevf.e/. In particular,

Every point has exactly one next-arrow, and exactly one prev-arrow, going out of it.
The aim of this problem is to develop a series of predicate formulas using just the symbols 0̃, next

and prev such that every model satisfying these formulas will contain contain a copy of the nonnegative
integers N, with nextf acting on the copy as the “C1” or successor function and prevf acting as the “�1” or
predecessor function.

More precisely, the “copy” of N in a model will look like an infinite sequence of distinct points starting
with e0, with a next-arrow going from each point to the next in the sequence:

e0
next
�! e1

next
�! e2

next
�! : : :

next
�! en

next
�! : : :

https://courses.csail.mit.edu/6.042/spring18/mcs.pdf#problem.7.32


“cp3t” — 2018/4/6 — 19:48 — page 3 — #3

In-Class Problems Week 3, Tue. 3

so that nextf acts like plus one. We also want prevf to act like minus one: whenever a next-arrow goes into
an element e, then the prev-arrow out of e goes back to the beginning of the next-arrow:

e0

next
�!
prev
 � e1

next
�!
prev
 � e2

next
�!
prev
 � : : :

next
�!
prev
 � en

next
�!
prev
 � : : : : (4)

Not shown is a further prev-arrow self-loop from e0 to e0, reflecting the convention for nonnegative integers
that subtracting from zero has no effect.

There is a simple way to express this requirement as a predicate formula:

8x: prev.next.x// D x : (5)

Formula (5) means that the prev-arrow out of any point e goes back to the beginning of any next-arrow into
e. Of course this will not be possible if there is more than one next-arrow into e.

There are some standard terms called numerals used to describe the elements e0; e1; : : : in (4). Namely,
the numeral for e0 will be 0̃, and the numeral for en will be the application n times of next to 0̃. For example,
the numeral for three would be:

next.next.next.0̃///: (6)

We’ll refer to the numeral for en asen. Soe3 refers to the term (6).
But we don’t quite have the desired situation pictured in (4): there is nothing so far that prevents all

the numerals having the same value. In other words, the formulas above are consistent with the formula
next.0̃/ D 0̃. (You should check this yourself right now.) We might try to fix this by requiring that no
next-arrow can begin and end at the same element, but there still could be a pair of numeral values, each of
which was nextf of the other. That is, the model might satisfye2 WWD next.next.0̃// D 0̃:

We could go on to forbid such length two cycles of next-arrows, but then there might be a cycle of three:

e3 WWD next.next.next.0̃/// D 0̃;

and so on. Fortunately, something we want to do anyway will fix this potential problem with the numeral
values: we haven’t yet provided a formula that will make the interpretion e0 of 0̃ behave like zero.

(a) Write a predicate formula expressing the fact that the value of 0̃ is not plus-one of anything. Also, by
convention, subtracting one from zero has no effect.

The formulas of part (a) and (5) together imply that the numeral values will yield the copy (4) of N we
want. To verify this, we just need to show that the values of all the numerals are distinct.

(b) Explain why two different numerals must have different values in any model satisfying (5) and part (a).

Hint: It helps to describe the meaning of (5) by what it says about arrows. There is also an explanation
based on the Well Ordering Principle.

So we have verified that any model satisfying (5) and the formula of part (a) has the desired copy of N.
The distinction between formulas that are true over the domain N and formulas that are valid, that is true

over all domains can be confusing on first sight. To highlight the distinction, it is worth seeing that the
formula of part (a) together with (5) do not ensure that their models consist solely of a copy of N.

For example, a model might consist of two separate copies of N. We can stifle this particular possibility
of extra copies of N pretty easily. Any such copy has to start with a zero-like element, namely one that is
not in the range of nextf. So we just assert that there is the only zero-like element.

(c) Write a formula such that any model has only one copy of N.

But the additional axiom of part (c) still leaves room for models that, besides having a copy of N, also
have “extra stuff” with weird properties.



“cp3t” — 2018/4/6 — 19:48 — page 4 — #4

4 In-Class Problems Week 3, Tue.

(d) Describe a model that satisfies the formula of part (c) along with (5), part (a) and also satisfies

9x: x D next.x/: (7)

Supplemental Part

(e) Prove that
8x ¤ 0̃: next.prev.x// D x: (8)


	Problem 1
	Problem 2
	Problem 3

