In-Class Problems Week 2, Wed.

Problem 1.

Let P be the proposition depending on propositional variable A, B, C, D whose truth values for each truth assignment to A, B, C, D are given in the table below. Write out both a disjunctive and a conjunctive normal form for P.

A	B	C	D	P
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}

Hint: See Section 3.4.1.

Problem 2.

Use the equivalence axioms of Section 3.4.2 to convert the formula

$$
A \text { XOR } B \text { XOR } C
$$

to disjunctive-OR of AND's-form,
Hint: Start by replacing the XOR's with some AnD's, OR's, and NOT's.

Problem 3.

A 3-conjunctive normal form (3CNF) formula is a conjunctive normal form (CNF) formula in which each OR-term is an OR of at most 3 literals (variables or negations of variables). Although it may be hard to tell if a propositional formula F is satisfiable, it is always easy to construct a formula $\mathcal{C}(F)$ that is

- a 3CNF,
- has at most 24 times as many occurrences of variables as F, and
- is satisfiable iff F is satisfiable.

Note that we do not expect $\mathcal{C}(F)$ to be equivalent to F. We do know how to convert any F into an equivalent CNF formula, and this equivalent CNF formula will certainly be satisfiable iff F is. But in many cases, the smallest CNF formula equivalent to F may be exponentially larger than F instead of only 24 times larger. Even worse, there may not be any 3CNF equivalent to F.

To construct $\mathcal{C}(F)$, the idea is to introduce a different new variable for each operator that occurs in F. For example, if F was

$$
\begin{equation*}
((P \text { xOR } Q) \text { XOR } R) \text { OR }(\bar{P} \text { AND } S) \tag{1}
\end{equation*}
$$

we might use new variables X_{1}, X_{2}, O and A corresponding to the operator occurrences as follows:

$$
((P \underbrace{\mathrm{XOR}}_{X_{1}} Q) \underbrace{\mathrm{XOR}}_{X_{2}} R) \underbrace{\text { OR }}_{O}(\bar{P} \underbrace{\text { AND }}_{A} S)
$$

Next we write a formula that constrains each new variable to have the same truth value as the subformula determined by its corresponding operator. For the example above, these constraining formulas would be

$$
\begin{gathered}
X_{1} \operatorname{IFF}(P \text { XOR } Q), \\
X_{2} \operatorname{IFF}\left(X_{1} \text { XOR } R\right), \\
A \operatorname{IFF}(\bar{P} \text { AND } S), \\
O \operatorname{IFF}\left(X_{2} \text { OR } A\right)
\end{gathered}
$$

(a) Explain why the AND of the four constraining formulas above along with a fifth formula consisting of just the variable O will be satisfiable iff (1) is satisfiable.
(b) Explain why each constraining formula will be equivalent to a 3CNF formula with at most 24 occurrences of variables.
(c) Using the ideas illustrated in the previous parts, briefly explain how to construct $\mathcal{C}(F)$ for an arbitrary propositional formula F. (No need to fill in all the details for this part-a high-level description is fine.)

Problem 4.

Explain a simple way to obtain a conjunctive normal form (CNF) for a propositional formula directly from a disjunctive normal form (DNF) for its complement.

Hint: DeMorgan's Law does most of the job. Try working an illustrative example of your choice before describing the general case.

