# In-Class Problems Week 2, Wed.

## Problem 1.

Let *P* be the proposition depending on propositional variable *A*, *B*, *C*, *D* whose truth values for each truth assignment to *A*, *B*, *C*, *D* are given in the table below. Write out both a disjunctive and a conjunctive normal form for *P*.

| A | B | C | D | P |
|---|---|---|---|---|
| Т | Т | Т | Т | Т |
| Т | Т | Т | F | F |
| Т | Т | F | Т | Т |
| Т | Т | F | F | F |
| Т | F | Т | Т | Т |
| Т | F | Т | F | Т |
| Т | F | F | Т | Т |
| Т | F | F | F | Т |
| F | Т | Т | Т | Т |
| F | Т | Т | F | F |
| F | Т | F | Т | Т |
| F | Т | F | F | F |
| F | F | Τ | Т | F |
| F | F | Т | F | F |
| F | F | F | Т | Т |
| F | F | F | F | Т |

*Hint:* See Section 3.4.1.

### Problem 2.

Use the equivalence axioms of Section 3.4.2 to convert the formula

 $A \operatorname{xor} B \operatorname{xor} C$ 

to disjunctive—OR of AND's-form,

*Hint:* Start by replacing the XOR's with some AND's, OR's, and NOT's.

## Problem 3.

A 3-conjunctive normal form (3CNF) formula is a conjunctive normal form (CNF) formula in which each OR-term is an OR of at most 3 *literals* (variables or negations of variables). Although it may be hard to tell if a propositional formula F is satisfiable, it is always easy to construct a formula C(F) that is

• a 3CNF,

<sup>2017,</sup> Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license.

- has at most 24 times as many occurrences of variables as F, and
- is satisfiable iff *F* is satisfiable.

Note that we do *not* expect C(F) to be *equivalent* to F. We do know how to convert any F into an equivalent CNF formula, and this equivalent CNF formula will certainly be satisfiable iff F is. But in many cases, the smallest CNF formula equivalent to F may be *exponentially larger* than F instead of only 24 times larger. Even worse, there may not be any **3**CNF equivalent to F.

To construct C(F), the idea is to introduce a different new variable for each operator that occurs in F. For example, if F was

$$((P \text{ XOR } Q) \text{ XOR } R) \text{ OR } (\overline{P} \text{ AND } S)$$

$$(1)$$

we might use new variables  $X_1, X_2, O$  and A corresponding to the operator occurrences as follows:

$$((P \underbrace{\text{XOR}}_{X_1} Q) \underbrace{\text{XOR}}_{X_2} R) \underbrace{\text{OR}}_{O} (\overline{P} \underbrace{\text{AND}}_{A} S).$$

Next we write a formula that constrains each new variable to have the same truth value as the subformula determined by its corresponding operator. For the example above, these constraining formulas would be

$$X_1 \text{ IFF } (P \text{ XOR } Q),$$
  
 $X_2 \text{ IFF } (X_1 \text{ XOR } R),$   
 $A \text{ IFF } (\overline{P} \text{ AND } S),$   
 $O \text{ IFF } (X_2 \text{ OR } A)$ 

(a) Explain why the AND of the four constraining formulas above along with a fifth formula consisting of just the variable O will be satisfiable iff (1) is satisfiable.

(b) Explain why each constraining formula will be equivalent to a 3CNF formula with at most 24 occurrences of variables.

(c) Using the ideas illustrated in the previous parts, briefly explain how to construct C(F) for an arbitrary propositional formula F. (No need to fill in all the details for this part—a high-level description is fine.)

#### Problem 4.

Explain a simple way to obtain a conjunctive normal form (CNF) for a propositional formula directly from a disjunctive normal form (DNF) for its complement.

*Hint:* DeMorgan's Law does most of the job. Try working an illustrative example of your choice before describing the general case.