## In-Class Problems Week 14, Fri.

## Guess the Bigger Number Game

Team 1:

- Write two different integers between 0 and 7 on separate pieces of paper.
- Put the papers face down on a table.

Team 2:

- Turn over one paper and look at the number on it.
- Either stick with this number or switch to the other (unseen) number.

Team 2 wins if it chooses the larger number; else, Team 1 wins.

## Problem 1.

The analysis given before class implies that Team 2 has a strategy that wins $4 / 7$ of the time no matter how Team 1 plays. Can Team 2 do better? The answer is "no," because Team 1 has a strategy that guarantees that it wins at least $3 / 7$ of the time, no matter how Team 2 plays. Describe such a strategy for Team 1 and explain why it works.

## Problem 2.

Let $I_{A}$ and $I_{B}$ be the indicator variables for events $A$ and $B$. Prove that $I_{A}$ and $I_{B}$ are independent iff $A$ and $B$ are independent.

Hint: Let $A^{1}::=A$ and $A^{0}::=\bar{A}$, so the event $\left[I_{A}=c\right]$ is the same as $A^{c}$ for $c \in\{0,1\}$; likewise for $B^{1}, B^{0}$.

## Problem 3.

Let $R_{1}, R_{2}, \ldots, R_{m}$, be mutually independent random variables with uniform distribution on [1..n]. Let $M::=\max \left\{R_{i} \mid i \in[1 . . m]\right\}$.
(a) Write a formula for $\mathrm{PDF}_{M}(1)$.
(b) More generally, write a formula for $\operatorname{Pr}[M \leq k]$.
(c) For $k \in[1 . . n]$, write a formula for $\operatorname{PDF}_{M}(k)$ in terms of expressions of the form " $\operatorname{Pr}[M \leq j]$ " for $j \in[1 . . n]$.

[^0]
## Problem 4.

Suppose you have a biased coin that has probability $p$ of flipping heads. Let $J$ be the number of heads in $n$ independent coin flips. So $J$ has the general binomial distribution:

$$
\operatorname{PDF}_{J}(k)=\binom{n}{k} p^{k} q^{n-k}
$$

where $q::=1-p$.
(a) Show that

$$
\begin{array}{ll}
\operatorname{PDF}_{J}(k-1)<\operatorname{PDF}_{J}(k) & \text { for } k<n p+p, \\
\operatorname{PDF}_{J}(k-1)>\operatorname{PDF}_{J}(k) & \text { for } k>n p+p .
\end{array}
$$

(b) Conclude that the maximum value of $\mathrm{PDF}_{J}$ is asymptotically equal to

$$
\frac{1}{\sqrt{2 \pi n p q}} .
$$

Hint: For the asymptotic estimate, it's ok to assume that $n p$ is an integer, so by part (a), the maximum value is $\mathrm{PDF}_{J}(n p)$. Use Stirling's Formula.

## Supplemental problem

## Problem 5.

You have just been married and you both want to have children. Of course, any child is a blessing, but your spouse prefers girls, so you decide to keep having children until you have a girl. In other words, if your 1st child is a girl, you'll stop there. If it's a boy, then you'll have a 2 nd child, too. If that one is a girl, you'll stop there. Otherwise, you'll have a 3rd child, and so on. Assume that you will never abandon this ingenious plan and that every child is equally likely to be a boy or a girl, independently of the number of its brothers so far. Let $B$ be the boys that you will eventually have to put up with to enjoy the company of your beloved daughter.
(a) For $i=0,1,2, \ldots$, what is the value of $\operatorname{PDF}_{B}(i)$ ?
(b) For $i=0,1,2, \ldots$, what is the value of $\operatorname{CDF}_{B}(i)$ ?


[^0]:    (c) (1) (2)

    2018, Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license.

