In-Class Problems Week 12, Wed.

Problem 1.

Recall that for functions f, g on $\mathbb{N}, f=O(g)$ iff

$$
\begin{equation*}
\exists c \in \mathbb{N} \exists n_{0} \in \mathbb{N} \forall n \geq n_{0} \quad c \cdot g(n) \geq|f(n)| . \tag{1}
\end{equation*}
$$

For each pair of functions below, determine whether $f=O(g)$ and whether $g=O(f)$. In cases where one function is $O()$ of the other, indicate the smallest nonnegative integer c and for that smallest c, the smallest corresponding nonnegative integer n_{0} ensuring that condition (1) applies.
(a) $f(n)=n^{2}, g(n)=3 n$.
(b) $f(n)=(3 n-7) /(n+4), g(n)=4$
(c) $f(n)=1+(n \sin (n \pi / 2))^{2}, g(n)=3 n$

Problem 2.

(a) Indicate which of the following asymptotic relations below on the set of nonnegative real-valued functions are equivalence relations (\mathbf{E}), strict partial orders (\mathbf{S}), weak partial orders (\mathbf{W}), or none of the above (N).
(i) $f=o(g)$, the "little Oh" relation.
(ii) $f=O(g)$, the "big Oh" relation.
(iii) $f \sim g$, the "asymptotically equal" relation.
(iv) $f=\Theta(g)$, the "Theta" relation.
(v) $f=O(g)$ AND NOT $(g=O(f))$.
(b) Indicate the implications among the items (i)-(v) in part (a). For example,

- item (i) IMPLIES item (ii).

Briefly explain your answers.

Problem 3.

False Claim.

$$
\begin{equation*}
2^{n}=O(1) \tag{2}
\end{equation*}
$$

Explain why the claim is false. Then identify and explain the mistake in the following bogus proof.
Bogus proof. The proof is by induction on n where the induction hypothesis $P(n)$ is the assertion (2).
base case: $P(0)$ holds trivially.
inductive step: We may assume $P(n)$, so there is a constant $c>0$ such that $2^{n} \leq c \cdot 1$. Therefore,

$$
2^{n+1}=2 \cdot 2^{n} \leq(2 c) \cdot 1
$$

which implies that $2^{n+1}=O(1)$. That is, $P(n+1)$ holds, which completes the proof of the inductive step.
We conclude by induction that $2^{n}=O(1)$ for all n. That is, the exponential function is bounded by a constant.

Supplemental problems

Problem 4.

Assign true or false for each statement and prove it.

- $n^{2} \sim n^{2}+n$
- $3^{n}=O\left(2^{n}\right)$
- $n^{\sin (n \pi / 2)+1}=o\left(n^{2}\right)$
- $n=\Theta\left(\frac{3 n^{3}}{(n+1)(n-1)}\right)$

Problem 5.

Give an elementary proof (without appealing to Stirling's formula) that $\log (n!)=\Theta(n \log n)$.

