In-Class Problems Week 12, Wed.

Problem 1.
Recall that for functions \(f, g \) on \(\mathbb{N} \), \(f = O(g) \) iff
\[
\exists c \in \mathbb{N} \exists n_0 \in \mathbb{N} \forall n \geq n_0 \quad c \cdot g(n) \geq |f(n)|. \quad (1)
\]

For each pair of functions below, determine whether \(f = O(g) \) and whether \(g = O(f) \). In cases where one function is \(O() \) of the other, indicate the smallest nonnegative integer \(c \) and for that smallest \(c \), the smallest corresponding nonnegative integer \(n_0 \) ensuring that condition (1) applies.

(a) \(f(n) = n^2, g(n) = 3n \).

(b) \(f(n) = (3n - 7)/(n + 4), g(n) = 4 \)

(c) \(f(n) = 1 + (n \sin(n\pi/2))^2, g(n) = 3n \)

Problem 2.

(a) Indicate which of the following asymptotic relations below on the set of nonnegative real-valued functions are equivalence relations (E), strict partial orders (S), weak partial orders (W), or none of the above (N).

(i) \(f = o(g) \), the “little Oh” relation.

(ii) \(f = O(g) \), the “big Oh” relation.

(iii) \(f \sim g \), the “asymptotically equal” relation.

(iv) \(f = \Theta(g) \), the “Theta” relation.

(v) \(f = O(g) \) AND NOT \(g = O(f) \).

(b) Indicate the implications among the items (i)–(v) in part (a). For example,

- item (i) IMPLIES item (ii).

Briefly explain your answers.
Problem 3.

False Claim.

\[2^n = O(1). \] \hspace{1cm} (2)

Explain why the claim is false. Then identify and explain the mistake in the following bogus proof.

Bogus proof. The proof is by induction on \(n \) where the induction hypothesis \(P(n) \) is the assertion (2).

- **Base case:** \(P(0) \) holds trivially.
- **Inductive step:** We may assume \(P(n) \), so there is a constant \(c > 0 \) such that \(2^n \leq c \cdot 1 \). Therefore,

\[
2^{n+1} = 2 \cdot 2^n \leq (2c) \cdot 1,
\]

which implies that \(2^{n+1} = O(1) \). That is, \(P(n + 1) \) holds, which completes the proof of the inductive step.

We conclude by induction that \(2^n = O(1) \) for all \(n \). That is, the exponential function is bounded by a constant.

\[\blacksquare \]

Supplemental problems

Problem 4.
Assign true or false for each statement and prove it.

- \(n^2 \sim n^2 + n \)
- \(3^n = O(2^n) \)
- \(n^{\sin(n\pi/2)+1} = o(n^2) \)
- \(n = \Theta\left(\frac{3n^3}{(n+1)(n-1)}\right) \)

Problem 5.
Give an elementary proof (without appealing to Stirling’s formula) that \(\log(n!) = \Theta(n \log n) \).