In-Class Problems Week 12, Fri.

Problem 1. (a) How many of the billion numbers in the integer interval $\left[1 . .10^{9}\right]$ contain the digit 1? (Hint: How many don't?)
(b) There are 20 books arranged in a row on a shelf. Describe a bijection between ways of choosing 6 of these books so that no two adjacent books are selected, and 15-bit strings with exactly 6 ones.

Problem 2.

An n-vertex numbered tree is a tree whose vertex set is $[1 . . n]$ for some $n>2$. We define the code of the numbered tree to be a sequence of $n-2$ integers in [1..n] obtained by the following recursive process: ${ }^{1}$

If there are more than two vertices left, write down the father of the largest leaf, delete this leaf, and continue this process on the resulting smaller tree. If there are only two vertices left, then stop-the code is complete.

For example, the codes of a couple of numbered trees are shown in the Figure 1.
tree code

65622

432

Figure 1
(a) Describe a procedure for reconstructing a numbered tree from its code.
(b) Conclude there is a bijection between the n-vertex numbered trees and sequences $(n-2)$ integers in [1..n]. State how many n-vertex numbered trees there are.
(c) © () 2018, Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license.
${ }^{1}$ The necessarily unique node adjacent to a leaf is called its father.

Problem 3.

(a) Let $\mathcal{S}_{n, k}$ be the possible nonnegative integer solutions to the inequality

$$
\begin{equation*}
x_{1}+x_{2}+\cdots+x_{k} \leq n . \tag{1}
\end{equation*}
$$

That is

$$
\mathcal{S}_{n, k}::=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in \mathbb{N}^{k} \mid(1) \text { is true }\right\} .
$$

Describe a bijection between $\mathcal{S}_{n, k}$ and the set of binary strings with n zeroes and k ones.
(b) Let $\mathcal{L}_{n, k}$ be the length k weakly increasing sequences of nonnegative integers $\leq n$. That is

$$
\mathcal{L}_{n, k}::=\left\{\left(y_{1}, y_{2}, \ldots, y_{k}\right) \in \mathbb{N}^{k} \mid y_{1} \leq y_{2} \leq \cdots \leq y_{k} \leq n\right\} .
$$

Describe a bijection between $\mathcal{L}_{n, k}$ and $\mathcal{S}_{n, k}$.

Supplemental problem

Problem 4.

Let X and Y be finite sets.
(a) How many binary relations from X to Y are there?
(b) Define a bijection between the set $[X \rightarrow Y]$ of all total functions from X to Y and the set $Y^{|X|}$. (Recall Y^{n} is the Cartesian product of Y with itself n times.) Based on that, what is | $[X \rightarrow Y] \mid$?
(c) Using the previous part, how many functions, not necessarily total, are there from X to Y ? How does the fraction of functions vs. total functions grow as the size of X grows? Is it $O(1), O(|X|), O\left(2^{|X|}\right), \ldots$?
(d) Show a bijection between the powerset $\operatorname{pow}(X)$ and the set $[X \rightarrow\{0,1\}]$ of 0-1-valued total functions on X.
(e) Let X be a set of size n and B_{X} be the set of all bijections from X to X. Describe a bijection from B_{X} to the set of permutations of $X .^{2}$ This implies that there are how many bijections from X to X ?

[^0]
[^0]: ${ }^{2}$ A sequence in which all the elements of a set X appear exactly once is called a permutation of X.

