In-Class Problems Week 11, Wed.

Problem 1.

Find the remainder of $26^{1818181}$ divided by 297.
Hint: $1818181=(180 \cdot 10101)+1$; use Euler's theorem.

Problem 2. (a) Prove that 2012^{1200} has a multiplicative inverse modulo 77.
(b) What is the value of $\phi(77)$, where ϕ is Euler's function?
(c) What is the remainder of 2012^{1200} divided by 77 ?

Problem 3.

Prove that for any prime p and integer $k \geq 1$,

$$
\phi\left(p^{k}\right)=p^{k}-p^{k-1}
$$

where ϕ is Euler's function. Hint: Which numbers between 0 and $p^{k}-1$ are divisible by p ? How many are there?

Note: This is proved in the text. Don't look up that proof.

Problem 4.

At one time, the Guinness Book of World Records reported that the "greatest human calculator" was a guy who could compute 13th roots of 100 -digit numbers that were 13th powers. What a curious choice of tasks....

In this problem, we prove

$$
\begin{equation*}
n^{13} \equiv n \quad(\bmod 10) \tag{1}
\end{equation*}
$$

for all n.
(a) Explain why (1) does not follow immediately from Euler's Theorem.
(b) Prove that

$$
\begin{equation*}
d^{13} \equiv d \quad(\bmod 10) \tag{2}
\end{equation*}
$$

for $0 \leq d<10$.
(c) Now prove the congruence (1).

[^0]
[^0]: (c) (1)(2)

 2018, Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license.

