In-Class Problems Week 10, Fri.

Problem 1.

Find the inverse of 17 modulo 29 in the interval [1..28].

Problem 2.

Find

$$
\begin{equation*}
\operatorname{rem}\left(9876^{3456789}\left(9^{99}\right)^{5555}-6789^{3414259}, 14\right) \tag{1}
\end{equation*}
$$

Problem 3. (a) Why is a number written in decimal evenly divisible by 9 if and only if the sum of its digits is a multiple of 9 ? Hint: $10 \equiv 1(\bmod 9)$.
(b) Take a big number, such as 37273761261 . Sum the digits, where every other one is negated:

$$
3+(-7)+2+(-7)+3+(-7)+6+(-1)+2+(-6)+1=-11
$$

Explain why the original number is a multiple of 11 if and only if this sum is a multiple of 11 .

Problem 4.

Prove that if $a \equiv b(\bmod 14)$ and $a \equiv b(\bmod 5)$, then $a \equiv b(\bmod 70)$.

Problem 5.

Suppose a, b are relatively prime and greater than 1. In this problem you will prove the Chinese Remainder Theorem, which says that for all m, n, there is an x such that

$$
\begin{align*}
& x \equiv m \bmod a, \tag{2}\\
& x \equiv n \bmod b . \tag{3}
\end{align*}
$$

Moreover, x is unique up to congruence modulo $a b$, namely, if x^{\prime} also satisfies (2) and (3), then

$$
x^{\prime} \equiv x \bmod a b
$$

(a) Prove that for any m, n, there is some x satisfying (2) and (3).

Hint: Let b^{-1} be an inverse of b modulo a and define $e_{a}::=b^{-1} b$. Define e_{b} similarly. Let $x=m e_{a}+n e_{b}$.
(b) Prove that

$$
[x \equiv 0 \bmod a \text { AND } x \equiv 0 \bmod b] \quad \text { implies } \quad x \equiv 0 \bmod a b .
$$

[^0](c) Conclude that
$$
\left[x \equiv x^{\prime} \bmod a \text { AND } x \equiv x^{\prime} \bmod b\right] \quad \text { implies } \quad x \equiv x^{\prime} \bmod a b .
$$
(d) Conclude that the Chinese Remainder Theorem is true.
(e) What about the converse of the implication in part (c)?

[^0]: (c) (1)() 2018, Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license.

