

Counting in Gambling

What fraction of poker hands are "a pair of Jacks?" (probability of a pair of Jacks)

(C) Albert R Meyer, April 17, 2013 rulescount. 2

> Counting in Algorithms \# ops to update a data structure (\# comparisons needed to sort n items) \# steps in a computation (\# multiplies to compute d^{n})


```
# possible passwords
    # possible keys

\section*{Sum Rule}
- Class has 43 women, 54 men so total enrollment \(=43+54=97\)
- 26 lower case letters, 26 upper case letters, and 10 digits, so \# characters \(=26+26+10=62\)

Sum Rule


If sets \(A\) and \(B\) are disjoint, then \(|A \cup B|=|A|+|B|\)

\section*{Pis Product Rule}

If there are 4 boys and 3 girls, there are
\[
4 \cdot 3=12
\]
different boy/girl couples

```

If |A| =m and |B| =n, then
|A\timesB| =m\cdotn
A={a,b,c,d},B={1,2,3}
A × B ={(a,1),(a,2),(a,3),
(b,1),(b,2),(b,3),
(c,1),(c,2),(c,3),
(d,1),(d,2),(d,3)}

```

\# length \(n\) strings from an alphabet of size \(m\) is

\section*{\(m^{n}\)}
Product Rule: Counting Strings \# length-4 binary strings
    \(=|B \times B \times B \times B|\)
    \(=\left|B^{4}\right|\) where \(B::=\{0,1\}\)
\[
=2 \cdot 2 \cdot 2 \cdot 2=2^{4}
\]```

