

- 1 card of still a third rank

a 2-pair hand:
$K \downarrow, K D, A \downarrow, A \uparrow$, 3*
playing cards
cards have
rank: A, 2, 3,..., 10, J, Q, K
suit: $\boldsymbol{\wedge}, \nabla, \downarrow, \boldsymbol{\phi}$
total: $13.4=52$ cards
cc) (1) (2) \qquad Albert R Meyer, November 6, 2015


```
to count, choose:
- 1 'st pair rank (13 ranks)
-2nd pair rank (12 ranks left)
- last card rank (11 ranks left)
```

開触 counting 2-pair poker hands
example: choosing
$K, A, 3,\{\star, \bullet\},\{\diamond, \uparrow\}, \otimes$
specifies 2 -pair hand:

踢䖪 counting 2－pair poker hands then choose：	
－ $1^{\text {st }}$ pair suits	$\binom{4}{2} \text { sets of }$
－ $2^{\text {nd }}$ pair suits	$\binom{4}{2} \begin{gathered}\text { sets of } \\ 2 \text { suits }\end{gathered}$
－last card suit	（4 suits）
－® mesamere	mess 208

 example：choosing $K, A, 3,\{\bullet, \bullet\},\{\bullet, \uparrow\}, \infty$ specifies 2 －pair hand： $K \diamond, K$

 example: choosing $K, A, 3,\{\star, \downarrow\},\{\downarrow, \uparrow\}, \&$ specifies 2 -pair hand: $K \diamond, K D, A \diamond, A \uparrow, 3 \&$
© (1) () Albert R Meyer, \quad November 6, 2015
counting 2-pair poker hands but the correspondence to 2-pair hands is not a bijection:

$$
(K, A, 3,\{\diamond, \infty\},\{\diamond, \infty\}, \varnothing)
$$

$\rightarrow K \bullet, K D, A \geqslant A 4,3 \%$
$A, K \quad\{\bullet \uparrow\},\{-\oplus\}$
(c) (1) © () Albert R Meyer, \quad November 6, 2015 2pair. 13
counting 2-pair poker hands to count, choose: $=$ the bug

- $1^{\text {st }}$ pair rank (13 ranks)
- $2^{\text {nd }}$ pair, rank (12 ranks left)
- last card rank (11 ranks left)
 but the correspondence to 2-pair hands is not a bijection: $(K, A, 3,\{\bullet, \nu\},\{\bullet, \oplus\}, \phi)$ $\Rightarrow K \geqslant, K D, A \geqslant A 4,3 \%$
$(A, K, 3,\{\bullet, \uparrow\},\{\bullet, \varphi\}, \infty)$
cc) (1) (2) Albert R Meyer, November 6, 2015

此: counting 2-pair poker hands to count, choose: = $=$ the bug - ${ }^{\text {st }}$ pair rank (13 ranks)
 - $2^{\text {nd }}$ pair, rank (12 ranks left)
 - last card rank (11 ranks left) either pair might be $1^{\text {st }}$

曷四谓 counting 2－pair poker hands so \＃2－pair hands is really
$\frac{1}{2} \cdot 13 \cdot 12 \cdot 11 \cdot\binom{4}{2} \cdot\binom{4}{2} \cdot 4$

胃路 counting 2－pair poker hands so \＃2－pair hands is
$13 \cdot 2 \cdot(\cdot)^{4} \cdot\binom{4}{2} \cdot 4$
c）（1）© Albert R Meyer，\quad November 6， 2015 2pair． 19

