```
*6
\begin{array} { c } { \hline } \\ { \hline 1 2 } \\ { } \\ { \hline } \end{array}
| lllll
\

\section*{Proof by Contradiction}

\section*{\begin{tabular}{|c|c|c|c}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline
\end{tabular} \begin{tabular}{c|c|c|c|}
\hline 12 & & 10 & 5 \\
\hline 3 & 1 & 4 & 14 \\
\hline & & & \\
\hline
\end{tabular} \begin{tabular}{|c|c|c|c|}
\hline 3 & 1 & 4 & 14 \\
\hline 15 & 8 & 11 & 2 \\
\hline
\end{tabular} \\ Proof by Contradiction \\ If an assertion implies something false, then the assertion itself must be false!}
\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline
\end{tabular}
 Is \(\sqrt[3]{1332} \leq 11\) ? If so, \(1332 \leq 1331\)

That's not true, so
```

 \sqrt{3}{1332 > 11}
    ```
\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cc|}
\hline 2 & 1 & 1 & \\
\hline 3 & 1 & 4 & 14 \\
\hline 15 & 8 & 11 & 2 \\
\hline
\end{tabular}
Proof by Contradiction
Theorem: \(\sqrt{2}\) is irrational.
- Suppose \(\sqrt{2}\) was rational
- So have \(n\), d integers without common prime factors such that \(\sqrt{2}=\frac{n}{d}\)
- We will show that n \& d are both even. This contradicts no common factor.
```

