Connected vertices

Lemma:
The shortest walk between two vertices is a path!

Proof: (by contradiction) suppose path from u to v crossed itself:

\[u \rightarrow c \rightarrow c \rightarrow v \]

then path without c---c is shorter!

Walks & Paths

Lemma:
The shortest walk between two vertices is a path!

Proof: (by contradiction) suppose path from u to v crossed itself:

\[u \rightarrow c \rightarrow c \rightarrow v \]

then path without c---c is shorter!

length n walk relation

\[v \xrightarrow{G^n} w \]

IFF \(\exists \) length n walk from v to w

\(G^n \) is the length n walk relation for \(G \)
length n walk relation

G itself is the length 1 walk relation: \(G^1 = G \)

lemma:

\[G^m \circ G^n = G^{m+n} \]

relational composition

Matrices & Composition

\(A_G \) := Adjacency matrix for \(G \)

Lemma:

\[A_{G \circ H} = A_H \circ A_G \]

where \(\circ \) is Boolean matrix product—using OR instead of +

Matrices & Composition

So compute \(A_G^n \) by fast matrix exponentiation

\[\approx \log n \text{ matrix products.} \]
Walk Relation

\[G^* \text{ is walk relation of } G \]
\[u \text{ } G^* \text{ } v \text{ iff } \exists \text{walk } u \text{ to } v \]
(u is connected to v)

Compute the Walk Relation

Add self-loops:

\[G^\leq := G \cup \text{Id}_V \]

\[G^\leq \text{ has a length } n \text{ walk iff } G \text{ has a length } \leq n \text{ walk} \]

lengthening a walk in \(G \)

\[\text{lengthening a walk in } G^\leq \]

just keep looping \(k \) times to make a length \(5+k \) walk in \(G^\leq \)
Compute the Walk Relation

If G has n vertices, then
length of paths is $< n$, and
$G^* = \left(G^{\leq} \right)^{n-1}$

So find all connected vertex pairs with $n^2 \log n$ AND/OR's