

ㅁ. | 3 | 1 | 4 | 14 |
| :---: | :---: | :---: | :---: |
| 15 | 8 | 11 | 2 |

$$
v G^{n} w
$$

IFF \exists length n walk from v to w G^{n} is the length n walk relation for G

踢 Gitself is the length 1 walk relation: $\boldsymbol{G}^{1}=\mathbf{G}$ lemma:
 $\boldsymbol{G}^{m} \circ \boldsymbol{G}^{n}=\boldsymbol{G}^{m+n}$
 relational composition

```
M0, Matrices & Composition
|3
AG::= Adjacency matrix for }
Lemma: }\mp@subsup{A}{G\circH}{}=\mp@subsup{A}{H}{}\odot\mp@subsup{A}{G}{
where }\odot\mathrm{ is Boolean matrix
product-using OR instead of +

\section*{Matrices \& Composition}
\(A_{G}::=\) Adjacency matrix for \(G\)
Lemma: \(\boldsymbol{A}_{G \circ H}=A_{H} \odot A_{G}\)
where \(\odot\) is Boolean matrix product-using OR instead of +
\[
\begin{gathered}
G^{m} \circ G^{n}=G^{m+n} \\
\times\left(G^{m} \circ G^{n}\right) y::=\exists z \times G^{m} z G^{n} y \\
\text { IFF } \quad \times G^{m+n} y \\
\text { because a length m+n walk } \\
\text { consists of a length m walk } \\
\text { followed by a length } n \text { walk }
\end{gathered}
\]

四 \begin{tabular}{|l|l|ll|}
\hline 3 & 4 & 4 \\
\hline 15 & 8 & 11 & 2 \\
\hline
\end{tabular}

So compute \(A_{G^{n}}\) by fast matrix exponentiation
\(\approx \log n\) matrix products.


蹋: in in lengthening a walk in \(G\)

 \(\frac{3}{3} 14\) \(15 \cdot{ }^{15} 2\)
Add self-loops:
\[
\mathbf{G}^{\leq}::=\boldsymbol{G} \cup \operatorname{Id}_{\mathrm{v}}
\]
\(G \leq\) has a length \(n\) walk iff \(G\) has a length \(\leq n\) walk
\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline
\end{tabular}
曷: lengthening a walk in \(G \leq\)

just keep looping \(k\) times to make a length \(5+k\) walk in \(G \leq\)
```

M0, Compute the Walk Relation
If G has }n\mathrm{ vertices, then
length of paths is <nn, and
G*}=(\mp@subsup{\boldsymbol{G}}{}{\leq}\mp@subsup{)}{}{n-1
So find all connected vertex
pairs with n}\mp@subsup{n}{}{2}\operatorname{log}n AND/OR'

```
```

