
Congruence $\bmod n$
example:
$6666663 \equiv 788253(\bmod 10)$
WHY?
$-\frac{78666653}{x X X X X X X 0}$


```
    Def: a\equivb(mod n)
        iff n|(a-b)
    example: 30 \equiv12(mod 9)
    since
        9 divides (30-12)
cc) (1) (0)
```

Memainder Lemma
a\equivb(mod n)
iff
rem(a,n) = rem(b,n)
example: 30 \equiv12(mod 9)
since
rem}(30,9)=3=\operatorname{rem}(12,9
(c) (1) ()
Albert R Meyer, March 9, 2015

```
```

 comomere
    ```

Remainder Lemma \(a \equiv b(\bmod n)\) iff \(\operatorname{rem}(a, n)=\operatorname{rem}(b, n)\) abbreviate: \(r_{b, n}^{\top}\)
\[
\begin{aligned}
& \text { proof: }(\Leftarrow) \\
& b=q_{a} n+r_{a, n} \\
& b=q_{b} n+r_{b, n}
\end{aligned}
\]
if rem's are \(=\), then
\[
a-b=\left(q_{a}-q_{b}\right) n \text { so } n \mid(a-b)
\]


a\equivb(mod n)
a\equivb(mod n)
    iff
    iff
rem(a,n)=\operatorname{rem}(b,n)
rem(a,n)=\operatorname{rem}(b,n)
```

Remainder arithmetic
Corollary:

$$
\begin{gathered}
a \equiv \operatorname{rem}(a, n)(\bmod n) \\
p f: 0 \leq r_{a, n}<n, \text { so } \\
r_{a, n}=\operatorname{rem}\left(r_{a, n}, n\right)
\end{gathered}
$$

```

Corollaries symmetric
\[
\begin{gathered}
a \equiv b(\bmod n) \text { implies } \\
b \equiv a(\bmod n)
\end{gathered}
\]
transitive
\[
a \equiv b \& b \equiv c(\bmod n)
\]
\[
\text { implies } a \equiv c(\bmod n)
\]

```

 If }a\equivb(\operatorname{mod}n), the
 a+c\equivb+c(modn)
 pf: n | (a-b) implies
 n|((a+c)-(b+c))
    ```
(1in Congruence \(\bmod n\)
If \(a \equiv b \quad(\bmod n)\), then
\[
a \cdot c \equiv b \cdot c(\bmod n)
\]
\[
\text { pf: } n \mid(a-b) \text { implies }
\]
\[
n \mid(a-b) \cdot c, \text { and so }
\]
\[
n \mid((a \cdot c)-(b \cdot c))
\]
```

4isiscongruence mod n
Cor: If a\equiva' (mod n),
then replacing a by a
in any arithmetic
formula gives an
\equiv(mod n) formula

```
@ © ©

Cingruence mod \(n\)
Corollary:
If \(a \equiv b(\bmod n)\) \&
\(c \equiv d(\bmod n)\),
then \(a \cdot c \equiv b \cdot d(\bmod n)\)

Albert R Meyer, \(\quad\) March 9, 2015

So arithmetic \((\bmod n)\) a lot like ordinary arithmetic

\[
\begin{aligned}
& \text { Remainder arithmetic } \\
& \text { example: } 287^{9} \equiv ?(\bmod 4) \\
& \begin{aligned}
287^{9} & \equiv 3^{9} \text { since } r_{287,4}=3 \\
& =\left(\left(3^{2}\right)^{2}\right)^{2} \cdot 3 \\
& \equiv\left(1^{2}\right)^{2} \cdot 3 \text { since } r_{9,4}=1 \\
& =3(\bmod 4)
\end{aligned}
\end{aligned}
\]```

