Pairwise Independent Sampling

Theorem:
Let R_1, \ldots, R_n be pairwise independent random variables with the same finite mean μ and variance σ^2. Let
$$A_n := \frac{R_1 + R_2 + \cdots + R_n}{n}.$$ Then
$$\Pr[|A_n - \mu| > \delta] \leq \frac{1}{n} \left(\frac{\sigma}{\delta} \right)^2$$

Sampling Questions

Make 32 measurements of CMD at random times and locations
Sampling Questions

A few of the 32 counts turn out to be > 200 but their average is 180. Convince the EPA that avg in whole river is < 200?

That is, convince EPA that the estimate based on 32 samples is within 20 of the actual average?

Sampling parameters

c ::= actual average CMD in river
CMD sample \leftrightarrow ran var with $\mu = c$
n samples \leftrightarrow n mutually indep ran vars with $\mu = c$
$A_n ::= \text{avg of the n CMD samples}$

Pairwise Independent Sampling

$\Pr[|A_n - \mu| > \delta] \leq \frac{1}{n} \left(\frac{\sigma}{\delta} \right)^2$

$n = 32, \mu = c, \delta = 20$
Pairwise Independent Sampling

\[\Pr[A_{32} - c > 20] \leq \frac{1}{32} \left(\frac{\sigma}{20} \right)^2 \]

\(n = 32, \quad \mu = c, \quad \delta = 20 \)

?? don't know \(\sigma \)

Bound for \(\sigma \)

\[\Pr[A_{32} - c > 20] \leq \frac{1}{32} \left(\frac{\sigma}{20} \right)^2 \]

\(n = 32, \quad \mu = c, \quad \delta = 20 \)

suppose \(L \) is max possible difference of samples

worst \(\sigma = \frac{L}{2} = 50 \)

Confidence – not Probable Reality

tempting to say:

“the probability that \(c = 180 \pm 20 \)

is at least 0.95”

--technically wrong!
Confidence

\[c \] is the **actual** average in the river.

\[c \] is **unknown**, but **not** a random variable!

Confidence

The possible outcomes of our **sampling process** is a random variable. We can say that the "**probability** that our **sampling process** will yield an average that is \(\pm 20 \) of the true average at least **0.95**".

Confidence

Tell the EPA that with **probability** 0.95 our estimate method for avg CMD will be within **20** of the actual avg, \(c \), in the river.

Confidence

For simplicity we say that

\[c = 180 \pm 20 \] at the **95% confidence level**.
Confidence

Moral: when you are told that some fact holds at a high confidence level, remember that a random experiment lies behind this claim. Ask yourself “what experiment?”

Confidence

Moral: Also ask “Why am I hearing about this particular experiment? How many others were tried and not reported?”

See http://xkcd.com/882/