Pairwise Independent Sampling Theorem:
Let R_{1}, \ldots, R_{n} be pairwise independent random vars with the same finite mean μ and variance σ^{2}. Let $A_{n}::=\left(R_{1}+R_{2}+\cdots+R_{n}\right) / n$. Then $\operatorname{Pr}\left[\left|A_{n}-\mu\right|>\delta\right] \leq \frac{1}{n}\left(\frac{\sigma}{\delta}\right)^{2}$

Sampling

coliform count in Charles River for swimming

EPA requires
average CMD < 200
(Coliform Microbial Density)

Sampling Questions

Make 32 measurements of CMD at random times and locations

A few of the 32 counts turn out to be >200 but their average is 180.
Convince the EPA that avg in whole river is <200 ?

```
Sampling parameters
\(c::=\) actual average CMD in river
CMD sample \(\leftrightarrow\) ran var with \(\mu=c\)
\(n\) samples \(\leftrightarrow n\) mutually indep ran vars with \(\mu=c\)
\(A_{n}::=\) avg of the \(n\) CMD samples
Sampling parameters

That is, convince EPA that the estimate based on 32 samples is within 20 of the actual average?

Pairwise Independent Sampling
\[
\begin{aligned}
& \operatorname{Pr}\left[\left|A_{n}-\mu\right|>\delta\right] \leq \frac{1}{n}\left(\frac{\sigma}{\delta}\right)^{2} \\
& n=32, \quad \mu=c, \quad \delta=20
\end{aligned}
\]
\[
\begin{aligned}
& \operatorname{Pr}\left[A_{32}-c \mid>20\right] \leq \frac{1}{32}\left(\frac{\sigma}{20}\right)^{2} \\
& n=32, \quad \mu=c, \quad \delta=20
\end{aligned}
\]
?? don't know \(\sigma\)
Pairwise Independent Sampling
\(\operatorname{Pr}\left[A_{32}-c \mid>20\right] \leq \frac{1}{32}\left(\frac{25}{20}\right)^{2}<0.05\)
\(\operatorname{Pr}\left[\left|A_{32}-c\right| \leq 20\right]>0.95\)
(2)

Bound for \(\sigma\)
\[
\operatorname{Pr}\left[A_{32}-c \mid>20\right] \leq \frac{1}{32}\left(\frac{\sigma}{20}\right)^{2}
\]
\[
n=32, \quad \mu=c, \quad \delta=20
\]
\[
\text { suppose } L \text { is max possible }
\]
difference of samples
©(®)(®)
\[
\text { worst } \sigma=\frac{L}{2}=50
\] Albert R Meyer, ay 13,2013

Confidence - not Probable Reality tempting to say:
"the probability-that \(c=180 \pm 20\) is \({ }^{-1}\) á least \(0.95^{\prime \prime \prime}\) ---technically wrong!
Confidence
\(c\) is the actual average in
the river.
\(c\) is unknown,
but not a random variable!

\section*{Confidence}

Tell the EPA that with probability 0.95 our estimate method for avg CMD will be within 20 of the actual avg, \(c\), in the river.
Tell the EPA that with
probability 0.95 our estimate
method for avg CMD will be
within 20 of the actual avg, \(c\),
in the river.

\section*{Confidence}

The possible outcomes of our sampling process is a random variable. We can say that the "probability that our sampling process will yield an average that is \(\pm 20\) of the true average at least \(0.95^{\prime \prime}\)

\section*{Confidence}

For simplicity we say that
\(c=180 \pm 20\) at the 95\% confidence level
\(\quad\) Confidence
Moral: when you are told that
some fact holds at a high
confidence level, remember
that a random experiment
lies behind this claim. Ask
yourself "what experiment?"
"wnem
\(\quad\) Confidence
Moral: Also ask "Why am I
hearing about this particular
experiment? How many
others were tried and not
reported?"
See http://xkcd.com/882/```

