Bookkeeper Rule Multinomial Theorem

$$
\begin{aligned}
& \text { bookkeeper rule } \\
& \text { \# permutations of the word } \\
& \text { bookkeeper ? } \\
& \text { - \# perms } b_{1} o_{2} k_{1} k_{2} e_{1} e_{2} p_{3} r=10! \\
& \text { - map perm } o_{1} \mathbf{b e}_{1} o_{2} k_{1} r k_{2} e_{2} \mathbf{p e}_{3} \text { to } \\
& \text { obeokrkepe }
\end{aligned}
$$

(触 binomial coefficients
binomial a special case:

$$
\binom{n}{k}=\binom{n}{k, n-k}
$$

\# permutations of length-n word with n_{1} a's, n_{2} b's, ..., n_{k} z's:

$$
\binom{n}{n_{1}, n_{2}, \cdots, n_{k}}::=\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
$$

multinomial coefficient

applying the BOOKKEEPER rule What is the coefficient of $E M S^{3}$ Ty
in the expansion of

$$
(E+M+S+T+Y)^{7} ?
$$

multinomial coefficients

What is the coefficient of $B A^{3} N^{2}$
in the expansion of
$(B+A+N)^{6}$?
The number of ways to rearrange the letters in the word

BANANA bookkeeper. 10
multinomial coefficients
What is the coefficient of $B A^{3} N^{2}$
in the expansion of
$(B+A+N)^{6}$?

$$
\begin{aligned}
& \left(X_{1}+X_{2}+\ldots+X_{k}\right)^{n}= \\
& \sum_{r_{1}+\ldots+r_{k}=n}\binom{n}{r_{1}, r_{2}, r_{3}, \ldots, r_{k}} X_{1}^{r_{1}} X_{2}^{r_{2}} X_{3}^{r_{3}} \ldots X_{k}^{r_{k}} \\
& \text { (9.) }
\end{aligned}
$$

multinomial coefficients

What is the coefficient of

$$
x_{1} x_{2} x_{3}^{3} \cdots x_{k}^{k}
$$

in the expansion of

$$
\left(X_{1}+X_{2}+X_{3}+\ldots+X_{k}\right)^{n} ?
$$

$$
\binom{n}{r_{1}, r_{2}, r_{3}, \ldots, r_{k}}
$$

