

Birthday Pairs

$$
E\left[M_{i j}\right]=1 / d
$$

so by linearity of $E[]$
$E[P]=\sum_{1 \leq i<j \leq n} E\left[M_{i j}\right]=\binom{n}{2} \cdot \frac{1}{d}$

Birthday Pairs
Have data on 179*students

$$
E[P]=\binom{179}{2} \cdot \frac{1}{365} \approx 43.6
$$

*excluding 2 sets of twins

Birthday Pairs

How likely is P near 43.6?

$$
\operatorname{Pr}[|P-43.6|>k]
$$

hard to calculate!
Variance easy to calculate!
cc) (i) (2) \qquad Albert R Meyer, December 1, 2013 birthday. 6

Pairwise Independence

[Albert and Drew have same b'day] is independent of
[David and Mike have same b'day] that is, $M_{\text {Albert,Drew }} \& M_{\text {David,Mike }}$ are independent
Obvious since the b'days of
Albert, Drew, David \& Mike are mutually independent

[^0]| | Predi | ions | |
| :---: | :---: | :---: | :---: |
| Chebyshev: | | | |
| $\operatorname{Pr}[43.6 \pm 2 \sigma$ pairs $]>1-(1 / 2)^{2}$ | | | |
| We actually found 47 pairs (29 pairs \& 6 triples) | | | |
| @ © ¢ | Alber R Merer. | Deemerer 2.2013 | |

[^0]: Birthday Pairs $\operatorname{Var}\left[M_{i j}\right]=(1 / 365)(1-1 / 365)$
 so by prwise additivity of $\operatorname{Var}[]$ $\operatorname{Var}[P]=\sum \operatorname{Var}\left[M_{i j}\right]=\binom{179}{2} \operatorname{Var}\left[M_{i j}\right]$
 $=\binom{179}{2} \cdot \frac{1}{365} \cdot\left(1-\frac{1}{365}\right) \approx 43.5$
 $\sigma_{p}<6.6$
 (c) (1) © Albert R Meyer, December 1, 2013

