

$$
\begin{array}{lc}
(1+X)^{0}= & 1 \\
(1+X)^{1}= & 1+1 X \\
(1+X)^{2}= & 1+2 X+1 X^{2} \\
(1+X)^{3}= & 1+3 X+3 X^{2}+1 X^{3} \\
(1+X)^{4}= & 1+4 X+6 X^{2}+4 X^{3}+1 X^{4}
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l}
(1+X)^{n} \quad n \text { times } \\
=(1+X)(1+X)(1+X)(1+X) \ldots(1+X)
\end{array}
\end{aligned}
$$

multiplying gives 2^{n} product terms:
$11 \cdots 1+X 11 X \cdots X 1+1 X X \cdots 1 X 1+\cdots+X X X$ a term corresponds to selecting 1 or X from each of the n factors

$$
\begin{aligned}
& \text { expression for } c_{k} \text { ? } \\
& (1+X)^{n} \quad n \text { times } \\
& =(1+X)(1+X)(1+X)(1+X) \ldots(1+X) \\
& \text { the } X^{k} \text { coeff, } c_{k \prime} \text { is \# terms } \\
& \text { with exactly } k X^{\prime} s \text { selected } \\
& \qquad c_{k}=\binom{n}{k} \\
& \text { (2atmon }
\end{aligned}
$$

Tine Binomial Formula

$$
(X+Y)^{n}=
$$

$$
\binom{n}{0} y^{n}+\binom{n}{1} x y^{n-1}+\binom{n}{2} x^{2} y^{n-2}+
$$

$$
\ldots+\binom{n}{k} x^{k} y^{n-k}+\ldots+\binom{n}{n} x^{n}
$$

©(1)(2) Albert R Meyer, April 18, 2012

