

$$
\begin{aligned}
& \text { Counting Passwords } \\
& L:=\{a, b, \ldots, Z, A, B, \ldots, Z\} \\
& D::=\{0,1, \ldots . . ., 9\} \\
& P_{n}::= \text { length } n \text { words } \\
& \quad \text { starting w/letter } \\
&= L \times(L \cup D)^{n-1}
\end{aligned}
$$

(axid Example: Counting Passwords

Password conditions:

- characters are digits \& letters
- between 6 \& 8 characters long
- starts with a letter
- case sensitive

$$
\begin{aligned}
& \text { Counting Passwords } \\
& \left|L \times(L \cup D)^{n-1}\right| \\
= & |L| \cdot|(L \cup D)|^{n-1} \\
= & |L| \cdot(|L|+|D|)^{n-1} \\
= & 52 \cdot(52+10)^{n-1}
\end{aligned}
$$


``` set of passwords:
\(P::=P_{6} \cup P_{7} \cup P_{8}\)
\(|P|=\left|P_{6}\right|+\left|P_{7}\right|+\left|P_{8}\right|\)
\(=52 \cdot\left(62^{5}+62^{6}+62^{7}\right)\)
\(\approx 19 \cdot 10^{14}\)
Albert R Meyer
at least one 7: another way
|4-digit nums w/ \(\geq\) one 7|
\(=\mid 4\)-digit nums \(\mid\)
- |those w/ no 7|
\(=10^{4}-9^{4}=3439\)

```

cases by 1st occurrence of 7:
x: any digit o: any digit }\not=
7xxx or 07xx or 007x or 0007
103 + 9.102 + 92.10 + 93
= 3439
Albert R Meyer, April 17, 2013

Mapping Rule: Bijections

If f is a bijection from A to B, then $|A|=|B|$

Counting Doughnut Selections
From 5 kinds of doughnuts select a dozen.
let $A::=$ all selections of 12 doughnuts
$\underbrace{00}_{\text {chocolate }}$ (nome) $\underbrace{000000}_{\text {sugon }} \underbrace{00}_{\text {glazed }} \underbrace{00}_{\text {plain }}$
©(®)
 Albert R Meyer,


```
*)
c chocolate, lemon,s sugar, g glazed, p plain
            maps to
    0c1010s10910p
    SO
    AA = B |
(0)(@)}Albert R Meyer, April 17,201
```

