The Ring \mathbb{Z}

Only the Remainder Interval

$$
\begin{aligned}
& i+j\left(\mathbb{Z}_{n}\right)::=\operatorname{rem}(i+j, n) \\
& i \cdot j\left(\mathbb{Z}_{n}\right)::=\operatorname{rem}(i \cdot j, n)
\end{aligned}
$$

The integer interval $[0, n)$ under,$+ \cdot\left(\mathbb{Z}_{n}\right)$ is called \mathbb{Z}_{n} the ring of integers mod n
(c) (${ }^{(1)(2)}$ Albert R Meyer October 13, 2015
(use = instead of \equiv)

$$
\begin{aligned}
& \mathbb{Z}_{n}^{*}::=\text { elements of } \mathbb{Z}_{n} \\
& \text { relatively prime to } n \\
& i \in \mathbb{Z}_{n}^{\star} \text { IFF } \operatorname{gcd}(i, n)=1 \\
& \text { IFF } i \text { is cancellable in } \mathbb{Z}_{n} \\
& \text { IFF } i \text { has an inverse in } \mathbb{Z}_{n}
\end{aligned}
$$

（1）© © Albert R Meyer October 13， 2015

欹四思 Euler＇s Theorem
$k^{\phi(n)}=1\left(\mathbb{Z}_{n}\right)$
for $k \in \mathbb{Z}_{n}^{*}$

