Staff Solutions to In-Class Problems Week 3, Fri.

Problem 1.
Set Formulas and Propositional Formulas.
(a) Verify that the propositional formula \((P \land \overline{Q}) \lor (P \land Q)\) is equivalent to \(P\).

STAFF NOTE: If students use truth tables, suggest they try again using cases and/or algebra.

COMMENTS:
- CP_proving_basic_set_identity
- from: S09.cp2r
- modest edit by ARM 2/13/11

keywords = [logic set theory identity propositional chain_of_iff difference]

Solution. There is a simple verification by truth table with 4 rows which we omit.

There is also a simple cases argument: if \(Q\) is \(T\), then the formula simplifies to \((P \land F) \lor (P \land T)\) which further simplifies to \((F \lor P)\) which is equivalent to \(P\).

Otherwise, if \(Q\) is \(F\), then the formula simplifies to \((P \land T) \lor (P \land F)\) which is likewise equivalent to \(P\).

Finally, there is a proof by propositional algebra:

\[
(P \land \overline{Q}) \lor (P \land Q) \iff P \land (\overline{Q} \lor Q) \iff P \land T \iff P.
\]

(b) Prove that

\[A = (A - B) \cup (A \cap B) \]

for all sets, \(A, B\), by showing

\[x \in A \iff x \in (A - B) \cup (A \cap B) \]

for all elements \(x\) using the equivalence of part (a) in a chain of IFF’s.
Solution. Two sets are equal iff they have the same elements, that is, \(x \) is in one set iff \(x \) is in the other set, for any \(x \). We’ll now prove this for \(A \) and \((A - B) \cup (A \cap B) \).

\[
x \in (A - B) \cup (A \cap B)
\]

iff \(x \in (A - B) \text{ OR } x \in (A \cap B) \) (by def of \(\cup \))

iff \((x \in A \text{ AND } x \in B) \text{ OR } (x \in A \text{ AND } x \in B) \) (by def of \(\land \) and \(- \))

iff \((P \land \neg Q) \text{ OR } (P \land Q) \) (where \(P := \{x \in A\} \) and \(Q := \{x \in B\} \))

iff \(P \) (by part (a))

iff \(x \in A \) (by def of \(P \)).

\[\square \]

STAFF NOTE: Ask your students if they can now see how a computer could automatically check such equalities between set formulas involving the basic set operators like \(\cup, \cap, - \ldots \)? The answer is that proving such equalities reduces to verifying equivalence of corresponding propositional formulas as above.

Problem 2.

Subset take-away\(^2\) is a two player game played with a finite set \(A \) of numbers. Players alternately choose nonempty subsets of \(A \) with the conditions that a player may not choose

- the whole set \(A \), or

- any set containing a set that was named earlier.

The first player who is unable to move loses the game.

For example, if the size of \(A \) is one, then there are no legal moves and the second player wins. If \(A \) has exactly two elements, then the only legal moves are the two one-element subsets of \(A \). Each is a good reply to the other, and so once again the second player wins.

The first interesting case is when \(A \) has three elements. This time, if the first player picks a subset with one element, the second player picks the subset with the other two elements. If the first player picks a subset with two elements, the second player picks the subset whose sole member is the third element. In both cases, these moves lead to a situation that is the same as the start of a game on a set with two elements, and thus leads to a win for the second player.

Verify that when \(A \) has four elements, the second player still has a winning strategy.\(^3\)

STAFF NOTE: Suggest that students break up into opposing teams and play a few games to be sure they understand the rules—and get an idea for a winning strategy.

COMMENTS:

- CP_subset_take_away

- from: S09.cp2r

keywords = [set_theory fun_game Gale subset_take_away]

\(^2\)From Christenson & Tilford, *David Gale’s Subset Takeaway Game, American Mathematical Monthly, Oct. 1997*

\(^3\)David Gale worked out some of the properties of this game and conjectured that the second player wins the game for any set \(A \). This remains an open problem.
Solution. There are way too many cases to work out by hand if we tried to list all possible games. But the elements of A all behave the same, so we can cut to a small number of cases using the fact that permuting around the elements of A in any game yields another possible game. We can do this by not mentioning specific elements of A, but instead using the variables a, b, c, d whose values will be the four elements of A.

We consider two cases for the move of the Player 1 when the game starts:

1. Player 1 chooses a one element or a three element subset. Then Player 2 should choose the complement of Player one’s choice. The game then becomes the same as playing the $n = 3$ game on the three element set chosen in this first round, where we know Player 2 has a winning strategy.

2. Player 1 chooses a subset of 2 elements. Let a, b be these elements, that is, the first move is $\{a, b\}$. Player 2 should choose the complement $\{c, d\}$ of Player 1’s choice. We then have the following subcases:

 (a) Player 1’s second move is a one element subset $\{a\}$. Player 2 should choose $\{b\}$. The game is then reduced to the two element game on $\{c, d\}$ where Player 2 has a winning strategy.

 (b) Player 1’s second move is a two element subset $\{a, c\}$. Player 2 should choose its complement $\{b, d\}$. This leads to two subsubcases:

 i. Player 1’s third move is $\{a, d\}$, one of the remaining size-two sets. Player 2 should choose its complement $\{b, c\}$. The remaining possible moves are the four sets of size 1, where the Player 2 clearly wins after two more rounds.

 ii. Player 1’s third move is a one-element set $\{a\}$. Player 2 should choose $\{b\}$. The game is then reduced to the two element game on $\{c, d\}$ where Player 2 has a winning strategy.

So in all cases, Player 2 has a winning strategy in the Gale game for $n = 4$.

Problem 3.

Forming a pair (a, b) of items a and b is a mathematical operation that we can safely take for granted. But when we’re trying to show how all of mathematics can be reduced to set theory, we need a way to represent the pair (a, b) as a set.

(a) Explain why representing (a, b) by $\{a, b\}$ won’t work.

Solution. The order of the elements gets lost: (a, b) and (b, a) would have the same representation.

(b) Explain why representing (a, b) by $\{a, \{b\}\}$ won’t work either. Hint: What pair does $\{\{1\}, \{2\}\}$ represent?

Solution. It could equally well represent the pairs $(\{2\}, 1)$ and $(\{1\}, 2)$, so the pair being “represented” can’t be uniquely determined.\footnote{Thanks to Nursen Ogutveren and her team, Spring ’13.}
(c) Define
\[
\text{pair}(a, b) ::= \{a, \{a, b\}\}.
\]
Explain why representing \((a, b)\) as \(\text{pair}(a, b)\) uniquely determines \(a\) and \(b\). *Hint:* Sets can’t be indirect members of themselves: \(a \in a\) never holds for any set \(a\), and neither can \(a \in b \in a\) hold for any \(b\).

Solution. Notice that \(\{a, b\} \notin a\) because otherwise \(a\) would indirectly be a member of itself, namely \(a \in \{a, b\} \in a\), which sets don’t do.\(^5\) So of the two elements in \(\text{pair}(a, b)\), \(a\) must be the element that is a member of the other one. If there are two elements in this other set, then \(b\) is the element that is not equal to \(a\), otherwise \(b\) must equal \(a\). \hfill \blacksquare

Extra practice with set formulas:

Problem 4.

A formula of set theory is a predicate formula that only uses the predicate “\(x \in y\)” The domain of discourse is the collection of sets, and “\(x \in y\)” is interpreted to mean the set \(x\) is one of the elements in the set \(y\).

For example, since \(x\) and \(y\) are the same set iff they have the same members, here’s how we can express equality of \(x\) and \(y\) with a formula of set theory:
\[
(x = y) ::= \forall z. (z \in x \iff z \in y).
\]

Express each of the following assertions about sets by a formula of set theory. Expressions may use abbreviations introduced earlier (so it is now legal to use “\(=\)” because we just defined it).

(a) \(x = \emptyset\).

Solution. \(\forall z. \text{NOT}(z \in x)\).

(b) \(x = \{y, z\}\).

Solution. \(\forall w. w \in x \iff (w = y \text{ OR } w = z)\).

(c) \(x \subseteq y\). (\(x\) is a subset of \(y\) that might equal \(y\).)

Solution. \(\forall z. z \in x \implies z \in y\).

Now we can explain how to express “\(x\) is a proper subset of \(y\)” as a set theory formula using things we already know how to express. Namely, letting “\(x \neq y\)” abbreviate \(\text{NOT}(x = y)\), the expression
\[
(x \subseteq y \text{ AND } x \neq y),
\]
describes a formula of set theory that means \(x \subset y\).

From here on, feel free to use any previously expressed property in describing formulas for the following:

\(^5\)By the Foundation Axiom, Section 8.3.2
(d) \(x = y \cup z \).

Solution. \(\forall w, w \in x \iff (w \in y \text{ OR } w \in z) \).

(e) \(x = y - z \).

Solution. \(\forall w, w \in x \iff (w \in y \text{ AND NOT}(w \in z)) \).

STAFF NOTE: Now other ways to express \(x \subseteq y \) are

\[\exists z . (y = x \cup z \text{ AND } z \neq \emptyset) \]

and

\[(x - y) = \emptyset. \]

(f) \(x = \text{pow}(y) \).

Solution. \(\forall z, z \in x \iff z \subseteq y \).

(g) \(x = \bigcup_{z \in y} z \).

This means that \(y \) is supposed to be a collection of sets, and \(x \) is the union of all of them. A more concise notation for \(\bigcup_{z \in y} z \) is simply \(\bigcup y \).

Solution. \(\forall w, w \in x \iff \exists z . (z \in y \text{ AND } w \in z) \).

Supplemental problem:

Problem 5.
For any set \(x \), define \(\text{next}(x) \) to be the set consisting of all the elements of \(x \), along with \(x \) itself:

\[\text{next}(x) \coloneqq x \cup \{x\} \]

Now we can define a sequence of sets \(v_0, v_1, v_2, \ldots \) called the \textit{finite ordinals} with a simple recursive recipe:

\[v_0 :\coloneqq \emptyset, \]

\[v_{n+1} :\coloneqq \text{next}(v_n). \]

So we have,

\[v_1 :\coloneqq \{\emptyset\} \]

\[v_2 :\coloneqq \{\emptyset, \{\emptyset\}\} \]

\[v_3 :\coloneqq \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} \]

The finite ordinals are kind of weird, but have some engaging properties, and more important, they turn out to play a significant role in set theory.

(a) Prove that

\[v_{n+1} = \{v_0, v_1, \ldots, v_n\}. \]

COMMENTS:

- CP_finite_ordinals
Solution. Proof. Proof by contradiction using WOP.
Suppose equation (2) fails for some nonnegative integer, \(n \). The by WOP, there is a least integer \(m \) for which it fails.

Now (2) holds for \(n = 0 \) since
\[
v_{0+1} = v_1 := \text{next}(v_0) := v_0 \cup \{v_0\} = \emptyset \cup \{v_0\} = \{v_0\}.
\]
So \(m \geq 1 \).

Since \(m \) is minimal and \(m - 1 \geq 0 \), equation (2) must hold for \(m - 1 \), namely
\[
v_m = v_{(m-1)+1} = \{v_0, v_1, \ldots, v_{m-1}\}
\]
But then
\[
v_{m+1} := \text{next}(v_m)
\]
\[
:= v_m \cup \{v_m\}
\]
\[
= \{v_0, v_1, \ldots, v_{m-1}\} \cup \{v_m\}
\]
\[
= \{v_0, v_1, \ldots, v_{m-1}, v_m\}.
\]
So in fact \(m \) also satisfies (2), a contradiction. Hence, equation (2) must hold for all \(n \in \mathbb{N} \).

(b) Conclude that \(|v_n| = n \).

Hint: A set cannot be a member of itself.\(^6\)

STAFF NOTE: You can’t claim this just from equation (2): you need to be sure that all the elements are different.

Solution. Clearly, \(|v_0| = 0 \) by definition, and for \(n > 0 \),
\[
v_n = \{v_0, v_1, \ldots, v_{n-1}\}
\]
by (2). Therefore \(|v_n| = |\{v_0, v_1, \ldots, v_{n-1}\}| = n \) providing all the \(v_i \)’s are different. But this follows immediately from (2), because if \(i < j \), then \(v_i \in v_j \), and so \(v_i \) must not equal \(v_j \) or it would be a member of itself.

(c) Conclude that if \(\mu, \nu, \rho \) are finite ordinals and \(\mu \in \nu \in \rho \), then \(\mu \in \rho \). Likewise, if \(\mu, \nu \) are different finite ordinals, then \(\nu \in \mu \) OR \(\mu \in \nu \).

Solution. Now from equation (2) we have the \(v_m \in v_n \) iff \(m < n \). So \(\mu \in \nu \in \rho \) is equivalent to
\[
\mu = v_m, \nu = v_n, \rho = v_r
\]
for some integers \(m < n < r \). But then \(m < r \) so \(\mu = v_m \in v_r = \rho \). That is, \(\mu \in \rho \) as required.
Likewise, if \(\mu \) and \(\nu \) are distinct ordinals, then \(\mu = v_m \) and \(\nu = v_n \) for some nonnegative integers \(m \neq n \).
But then either \(m < n \) or \(n < m \), in which case \(\mu \in \nu \) or \(\nu \in \mu \), respectively.

\(^6\)By the Foundation Axiom, Section 8.3.2.