Massachusetts Institute of Technology
6.042J/18.062J, Spring ’16: Mathematics for Computer Science
Prof. Albert R Meyer

Staff Solutions to In-Class Problems Week 6, Wed.

STAFF NOTE: Halting Problem; Ch. 8.2

Problem 1.
String procedures are one-argument procedures that apply to strings over the ASCII alphabet. If application of procedure, P, to string s results in a computation that eventually halts, we say that P recognizes s. We define $\text{lang}(P)$ to be the set of strings or language recognized by P:

$$\text{lang}(P) := \{s \in \text{ASCII}^* \mid P \text{ recognizes } s\}.$$

A language is unrecognizable when it is not equal to $\text{lang}(P)$ for any procedure P.

A string procedure declaration is a text, $s \in \text{ASCII}^*$, that conforms to the grammatical rules for programs. The declaration defines a procedure P_s, which we can think of as the result of compiling s into an executable object. If $s \in \text{ASCII}^*$ is not a grammatically well-formed procedure declaration, we arbitrarily define P_s to be the string procedure that fails to halt when applied to any string. Now every string defines a string procedure, and every string procedure is P_s for some $s \in \text{ASCII}^*$.

An easy diagonal argument in the text showed that $\text{No-halt} := \{s \mid P_s \text{ applied to } s \text{ does not halt}\} = \{s \mid s \not\in \text{lang}(P_s)\}$ is not recognizable.

It may seem pretty weird to apply a procedure to its own declaration. Are there any less weird examples of unrecognizable set? The answer is “many more.” In this problem, we’ll show three more:

- $\text{No-halt-\lambda} := \{s \mid P_s \text{ applied to } \lambda \text{ does not halt}\} = \{s \mid \lambda \not\in \text{lang}(P_s)\}$.
- $\text{Finite-halt} := \{s \mid \text{lang}(P_s) \text{ is finite}\}$.
- $\text{Always-halt} := \{s \mid \text{lang}(P_s) = \text{ASCII}^*\}$.

Let’s begin by showing how we could use a recognizer for No-halt-\lambda to define a recognizer for No-halt. That is, we will “reduce” the weird problem of recognizing No-halt to the more understandable problem of recognizing No-halt-\lambda. Since there is no recognizer for No-halt, it follows that there can’t be one for No-halt-\lambda either.

Here’s how this reduction would work: suppose we want to recognize when a given string s is in No-halt. Revise s to be the declaration of a slightly modified procedure $P_{s'}$ which behaves as follows:

- $P_{s'}$ applied to argument $t \in \text{ASCII}^*$, ignores t, and simulates P_s applied to s.

So, if P_s applied to s halts, then $P_{s'}$ halts on every string it is applied to, and if P_s applied to s does not halt, then $P_{s'}$ does not halt on any string it is applied to. That is,

$$s \in \text{No-halt} \implies \text{lang}(P_{s'}) = \emptyset$$

$$\implies \lambda \not\in \text{lang}(P_{s'})$$

$$\implies s' \not\in \text{No-halt-\lambda},$$

$$s \not\in \text{No-halt} \implies \text{lang}(P_{s'}) = \text{ASCII}^*$$

$$\implies \lambda \in \text{lang}(P_{s'})$$

$$\implies s' \not\in \text{No-halt-\lambda}.$$
In short,
\[s \in \text{No-halt} \iff s' \in \text{No-halt-} \lambda. \]

So to recognize when \(s \in \text{No-halt} \) all you need to do is recognize when \(s' \in \text{No-halt-} \lambda \). As already noted above (but we know that remark got by several students, so we’re repeating the explanation), this means that if \(\text{No-halt-} \lambda \) was recognizable, then \(\text{No-halt-} \lambda \) would be as well. Since we know that \(\text{No-halt} \) is unrecognizable, then \(\text{No-halt-} \lambda \) must also be unrecognizable, as claimed.

(a) Conclude that \(\text{Finite-halt} \) is unrecognizable.

Hint: Same \(s' \).

Solution. For \(s' \) as above, we know

\[
\begin{align*}
s \in \text{No-halt} & \implies \text{lang}(P_{s'}) = \emptyset \\
& \implies s' \in \text{Finite-halt}, \\
s \notin \text{No-halt} & \implies \text{lang}(P_{s'}) = \text{ASCII}^* \\
& \implies s' \notin \text{Finite-halt}.
\end{align*}
\]

So to recognize when \(s \in \text{No-halt} \) all you need to do is recognize when \(s' \in \text{Finite-halt} \). ■

Next, let’s see how a reduction of \(\text{No-halt} \) to \(\text{Always-halt} \) would work. Suppose we want to recognize when a given string \(s \) is in \(\text{No-halt} \). Revise \(s \) to be the declaration of a slightly modified procedure \(P_{s''} \) which behaves as follows:

When \(P_{s''} \) is applied to argument \(t \in \text{ASCII}^* \), it simulates \(P_s \) applied to \(s \) for up to \(|t| \) “steps” (executions of individual machine instructions). If \(P_s \) applied to \(s \) has not halted in \(|t| \) steps, then the application of \(P_{s''} \) to \(t \) halts. If \(P_s \) applied to \(s \) has halted within \(|t| \) steps, then the application of \(P_{s''} \) to \(t \) runs forever.

(b) Conclude that \(\text{Always-halt} \) is unrecognizable.

Hint: Explain why

\[s \in \text{No-halt} \iff s'' \in \text{Always-halt}. \]

Solution.

\[
\begin{align*}
s \notin \text{No-halt} & \implies \text{lang}(P_{s''}) = \{ t \mid |t| \leq \#\text{steps until } P_s \text{ halts on } s \} \\
& \implies \text{lang}(P_{s''}) \text{ is finite} \\
& \implies s'' \notin \text{Always-halt}, \\
s \in \text{No-halt} & \implies \text{lang}(P_{s''}) = \text{ASCII}^* \\
& \iff s'' \in \text{Always-halt}.
\end{align*}
\]

In short,

\[s \in \text{No-halt} \iff s'' \in \text{Always-halt}. \]

So to recognize when \(s \in \text{No-halt} \) all you need to do is recognize when \(s'' \in \text{Always-halt} \). But since there is no recognizer \(\text{No-halt} \), there can’t one for \(\text{Always-halt} \). ■

(c) Explain why \(\text{Finite-halt} \) is unrecognizable.

Hint: Same \(s'' \).
Solution. We have from the solution to part (b) that

\[s \notin \text{No-halt} \implies \text{lang}(P_{s''}) = \{ t \mid |t| \leq \text{steps until } P_s \text{ halts on } s \} \]
\[\implies \text{lang}(P_{s''}) \text{ is finite} \]
\[\implies s'' \in \text{Finite-halt} \]
\[\text{iff } s'' \notin \text{Finite-halt}, \]
\[s \in \text{No-halt} \implies \text{lang}(P_{s''}) = \text{ASCII}^* \]
\[\implies s'' \in \overline{\text{Finite-halt}}. \]

In short,

\[s \in \text{No-halt} \text{ iff } s'' \in \overline{\text{Finite-halt}}, \]

which implies that \(\overline{\text{Finite-halt}} \) is unrecognizable.

Note that it’s easy to recognize when \(P_s \) does halt on \(s \): just simulate the application of \(P_s \) to \(s \) until it halts. This shows that \(\overline{\text{No-halt}} \) is recognizable. We’ve just concluded that \(\text{Finite-halt} \) is nastier: neither it nor its complement is recognizable.

Problem 2.
This problem provides a proof of the [Schröder-Bernstein] Theorem:

If \(A \text{ inj } B \) and \(B \text{ inj } A \), then \(A \bij B \).

(1)

Since \(A \text{ inj } B \) and \(B \text{ inj } A \), there are are total injective functions \(f : A \to B \) and \(g : B \to A \).

Assume for simplicity that \(A \) and \(B \) have no elements in common. Let’s picture the elements of \(A \) arranged in a column, and likewise \(B \) arranged in a second column to the right, with left-to-right arrows connecting \(a \) to \(f(a) \) for each \(a \in A \) and likewise right-to-left arrows for \(g \). Since \(f \) and \(g \) are total functions, there is exactly one arrow out of each element. Also, since \(f \) and \(g \) are injections, there is at most one arrow into any element.

So starting at any element, there is a unique and unending path of arrows going forwards (it might repeat). There is also a unique path of arrows going backwards, which might be unending, or might end at an element that has no arrow into it. These paths are completely separate: if two ran into each other, there would be two arrows into the element where they ran together.

This divides all the elements into separate paths of four kinds:

(i) paths that are infinite in both directions,

(ii) paths that are infinite going forwards starting from some element of \(A \).

(iii) paths that are infinite going forwards starting from some element of \(B \).

(iv) paths that are unending but finite.

(a) What do the paths of the last type (iv) look like?

Solution. An even-length cycle of alternating \(f \)- and \(g \)-arrows.

(b) Show that for each type of path, either

(i) the \(f \)-arrows define a bijection between the \(A \) and \(B \) elements on the path, or

(ii) the \(g \)-arrows define a bijection between \(B \) and \(A \) elements on the path, or
(iii) both sets of arrows define bijections.

For which kinds of paths do both sets of arrows define bijections?

Solution. For paths that start at a point in \(A\), there will be an \(f\)-arrow out of every point on the path, so the \(f\)-arrows will define a bijection from the \(A\) elements to the \(B\) elements on the path. The \(g\)-arrows don’t define a bijection the other way, because they don’t hit the starting point.

For paths that start at a point in \(B\), the \(g\)-arrows will define a bijection from the \(B\) elements to the \(A\) elements, by the same reasoning.

For the other two types of path—cycles and two-way infinite—every point in \(B\) has exactly one \(f\)-arrow coming in, so these arrows define a bijection from the \(A\) elements to the \(B\) elements. Likewise, the \(g\)-arrows define a bijection from \(B\) to \(A\).

\(\blacksquare\)

(c) Explain how to piece these bijections together to form a bijection between \(A\) and \(B\).

Solution. Define a bijection \(h : A \rightarrow B\) as follows:

\[
h(a) := \begin{cases} f(a) & \text{if } a\text{'s path does not start at a point in } B, \\ g^{-1}(a) & \text{otherwise.}\end{cases}
\]

By part (b), \(h\) is a combination of bijections defined by different non-overlapping paths, and since every point is on a unique path used by \(h\), the function \(h\) must be a bijection. \(\blacksquare\)

(d) Justify the assumption that \(A\) and \(B\) are disjoint.

Solution. We can always find sets \(A'\) bij \(A\) and \(B'\) bij \(B\) such that \(A'\) and \(B'\) are disjoint. For example, let \(A' = A \times \{0\}\) and \(B' = B \times \{1\}\). Then if we prove (1) for \(A'\) and \(B'\), we could conclude it held for \(A\) and \(B\) because

\[A\text{ bij } A'\text{ bij } B'\text{ bij } B.\] \(\blacksquare\)