Staff Solutions to Problem Set 9

Reading: Chapter 13. Asymptotics

Problem 1.
Assuming the following sum equals a polynomial in \(n \), find the polynomial. Optionally, you might want to use induction to prove that the sum equals the polynomial you find, but no such proof is required for full credit.

\[
\sum_{i=1}^{n} i^3
\]

Solution. As in Section 13.2, a sensible guess is that the sum of the first \(n \) cubes will result in a fourth-degree polynomial in \(n \):

\[
\sum_{i=1}^{n} i^3 = an^4 + bn^3 + cn^2 + dn + e.
\]

We need to determine the coefficients.

\(n = 0 \) implies \(0 = e \).
\(n = 1 \) implies \(1 = a + b + c + d + e \).
\(n = 2 \) implies \(9 = 16a + 8b + 4c + 2d + e \).
\(n = 3 \) implies \(36 = 81a + 27b + 9c + 3d + e \).
\(n = 4 \) implies \(100 = 256a + 64b + 16c + 4d + e \).

Solving this equation gives:

\[
a = \frac{1}{4}, \quad b = \frac{1}{2}, \quad c = \frac{1}{4}, \quad d = 0, \quad e = 0,
\]

which would imply that

\[
\sum_{i=1}^{n} i^3 = \frac{n^4 + 2n^3 + n^2}{4}.
\] \(\text{(1)} \)

We now verify (1) by induction on \(n \) with induction hypothesis \(P(n) \) given by (1).

Base case: \(n = 0 \). The left hand side of (1) is an empty sum, which equals 0 by convention. The right hand side is also 0.

\[\text{© } 2015, \text{ Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license.}\]
Inductive step:
\[
\sum_{i=1}^{n+1} i^3 = \left(\sum_{i=1}^{n} i^3 \right) + (n+1)^3 \\
= \frac{n^4 + 2n^3 + n^2}{4} + (n+1)^3 \\
= \frac{n^4 + 2n^3 + n^2 + 4(n^3 + 3n^2 + 3n + 1)}{4} \\
= \frac{(n^4 + 4n^3 + 6n^2 + 4n + 1) + (2n^3 + 6n^2 + 6n + 2) + (n^2 + 2n + 1)}{4} \\
= \frac{(n + 1)^4 + 2(n + 1)^3 + (n + 1)^2}{4}.
\]
This proves \(P(n+1) \), completing the induction step.

Problem 2.
Show that
\[
\ln(n^2!) = \Theta(n^2 \ln n)
\]

Hint: Stirling’s formula for \((n^2)! \).

Solution. By Stirling’s formula:
\[
(n^2)! \sim \sqrt{2\pi n^2} \left(\frac{n^2}{e} \right)^{n^2}.
\]

We can now take logarithms (see Problem 13.34) to get:
\[
\ln(n^2!) \sim \ln \left(\sqrt{2\pi n^2} \left(\frac{n^2}{e} \right)^{n^2} \right) \\
= \ln(\sqrt{2\pi n^2}) + \ln \left(\left(\frac{n^2}{e} \right)^{n^2} \right) \\
= \frac{1}{2} \ln 2\pi + \ln n + n^2 \ln \left(\frac{n^2}{e} \right) \\
= \frac{1}{2} \ln 2\pi + \ln n + n^2(2 \ln n - 1) \\
\text{(\(\ln e = 1 \))}
\]
It is then easy to see that this expression and \(n^2 \ln n \) are big-O of each other, so we conclude that \(\ln(n^2!) = \Theta(n^2 \ln n) \).

Problem 3.
Prove that
\[
\sum_{k=1}^{n} k^6 = \Theta(n^7).
\]

Hint: One solution uses the Integral Method, and there are other workable approaches that avoid calculus.
Solution. Let $S_n := \sum_{k=1}^{n} k^6$. One approach is to use the Integral Method:

$$\frac{n^7}{7} = \int_{0}^{n} x^6 \, dx \leq S_n \leq \int_{0}^{n} (x + 1)^6 \, dx = \frac{(n + 1)^7}{7} - \frac{1}{7}.$$

So we have $n^7 \leq 7S_n$, and so $n^7 = O(S_n)$. Also $(n + 1)^7 / 7 - 1 / 7 = O(n^7)$, and so $S_n = O(n^7)$. Hence, $S_n = \Theta(n^7)$.

An alternative approach not using the Integral Method goes as follows. There are n terms in S_n and each term is at most n^6, so $S_n \leq n \cdot n^6 = n^7 = O(n^7)$. So $S_n = O(n^7)$.

On the other hand, at least $(n - 1)/2$ of the terms are as large as $[(n - 1)/2]^6$, so

$$S_n \geq (\frac{n-1}{2}) \cdot [(\frac{n-1}{2})]^6$$

$$= \frac{(n-1)^7}{2^7}$$

$$\geq \frac{n^7}{3^7}$$

for $n > 3$, so $n^7 \leq 3^7 \cdot S_n$. In other words, $n^7 = O(S_n)$.

\[\square\]