Staff Solutions to In-Class Problems Week 8, Fri.

STAFF NOTE: Coloring and Connectivity, Ch. 11.7-11.9

Problem 1.
A portion of a computer program consists of a sequence of calculations where the results are stored in variables, like this:

```
Inputs: a, b
Step 1. c = a + b
2. d = a * c
3. e = c + 3
4. f = c - e
5. g = a + f
6. h = f + 1
Outputs: d, g, h
```

A computer can perform such calculations most quickly if the value of each variable is stored in a register, a chunk of very fast memory inside the microprocessor. Programming language compilers face the problem of assigning each variable in a program to a register. Computers usually have few registers, however, so they must be used wisely and reused often. This is called the register allocation problem.

In the example above, variables `a` and `b` must be assigned different registers, because they hold distinct input values. Furthermore, `c` and `d` must be assigned different registers; if they used the same one, then the value of `c` would be overwritten in the second step and we’d get the wrong answer in the third step. On the other hand, variables `b` and `d` may use the same register; after the first step, we no longer need `b` and can overwrite the register that holds its value. Also, `f` and `h` may use the same register; once `f + 1` is evaluated in the last step, the register holding the value of `f` can be overwritten.

(a) Recast the register allocation problem as a question about graph coloring. What do the vertices correspond to? Under what conditions should there be an edge between two vertices? Construct the graph corresponding to the example above.

Solution. There is one vertex for each variable. An edge between two vertices indicates that the values of the variables must be stored in different registers. We can tell when two variables must be stored in different registers as follows: classify each appearance of a variable in the program as either an assignment or a use. An appearance is an assignment when the variable is on the left side of an equation or on the “Inputs” line. An appearance of a variable is a use if the variable is on the right side of an equation or on the “Outputs” line. The lifetime of a variable is the segment of code extending from the initial assignment of the variable until the last use. There is an edge between two variables iff their lifetimes overlap.¹

This rule generates the following graph:

¹This specification of edges is for the case that each variable is assigned at most once (see part (c)). We are also assuming that all variables are relevant to the Outputs, where a variable is relevant iff it is an Output or is used in an assignment to a relevant variable. This is a recursive—not a circular—definition of relevant variable! Likewise, we assume that all variables are dependent on the Inputs, where a variable is dependent on the Inputs iff it is an Input or appears in the left hand side of an assignment whose right hand side contains a dependent variable.
(b) Color your graph using as few colors as you can. Call the computer’s registers \(R_1, R_2 \), etc. Describe the assignment of variables to registers implied by your coloring. How many registers do you need?

Solution. Four registers are needed.

One possible assignment of variables to registers is indicated in the figure above. In general, coloring a graph using the minimum number of colors is quite difficult; no efficient procedure is known. However, the register allocation problem always leads to an interval graph, and optimal colorings for interval graphs are always easy to find. This makes it easy for compilers to allocate a minimum number of registers.

(c) Suppose that a variable is assigned a value more than once, as in the code snippet below:

\[
\cdots \\
\quad t = r + s \\
\quad u = t \times 3 \\
\quad t = m - k \\
\quad v = t + u \\
\cdots
\]

How might you cope with this complication?

Solution. Each time a variable is reassigned, we could regard it as a completely new variable. Then we would regard the example as equivalent to the following:

\[
\cdots \\
\quad t = r + s \\
\quad u = t \times 3 \\
\quad t' = m - k \\
\quad v = t' + u \\
\cdots
\]

We can now proceed with graph construction and coloring as before.

Problem 2.
False Claim. *If every vertex in a graph has positive degree, then the graph is connected.*

(a) Prove that this Claim is indeed false by providing a counterexample.

Solution. There are many counterexamples; here is one:

![Counterexample graph](image)

(b) Since the Claim is false, there must be a logical mistake in the following bogus proof. Pinpoint the first logical mistake (unjustified step) in the proof.

Bogus proof. We prove the Claim above by induction. Let $P(n)$ be the proposition that if every vertex in an n-vertex graph has positive degree, then the graph is connected.

Base cases: ($n \leq 2$). In a graph with 1 vertex, that vertex cannot have positive degree, so $P(1)$ holds vacuously.

$P(2)$ holds because there is only one graph with two vertices of positive degree, namely, the graph with an edge between the vertices, and this graph is connected.

Inductive step: We must show that $P(n)$ implies $P(n + 1)$ for all $n \geq 2$. Consider an n-vertex graph in which every vertex has positive degree. By the assumption $P(n)$, this graph is connected; that is, there is a path between every pair of vertices. Now we add one more vertex x to obtain an $(n + 1)$-vertex graph:

![Inductive step graph](image)

All that remains is to check that there is a path from x to every other vertex z. Since x has positive degree, there is an edge from x to some other vertex, y. Thus, we can obtain a path from x to z by going from x to y and then following the path from y to z. This proves $P(n + 1)$.

By the principle of induction, $P(n)$ is true for all $n \geq 0$, which proves the Claim.

Solution. This one is tricky: the proof is actually a good proof of something else. The first error in the proof is only in the final statement of the inductive step: “This proves $P(n + 1)$”.

The issue is that to prove $P(n + 1)$, *every* $(n + 1)$-vertex positive-degree graph must be shown to be connected. But the proof doesn’t show this. Instead, it shows that every $(n + 1)$-vertex positive-degree graph *that can be built up by adding a vertex of positive degree to an n-vertex connected graph*, is connected.

The problem is that *not every* $(n + 1)$-vertex positive-degree graph can be built up in this way. The counterexample above illustrates this: there is no way to build that 4-vertex positive-degree graph from a 3-vertex positive-degree graph.
More generally, this is an example of “buildup error”. This error arises from a faulty assumption that every size $n + 1$ graph with some property can be “built up” in some particular way from a size n graph with the same property. (This assumption is correct for some properties, but incorrect for others—such as the one in the argument above.)

One way to avoid an accidental build-up error is to use a “shrink down, grow back” process in the inductive step: start with a size $n + 1$ graph, remove a vertex (or edge), apply the inductive hypothesis $P(n)$ to the smaller graph, and then add back the vertex (or edge) and argue that $P(n + 1)$ holds. Let’s see what would have happened if we’d tried to prove the claim above by this method:

Inductive step: We must show that $P(n)$ implies $P(n + 1)$ for all $n ≥ 1$. Consider an $(n + 1)$-vertex graph G in which every vertex has degree at least 1. Remove an arbitrary vertex v, leaving an n-vertex graph G' in which every vertex has degree... uh-oh!

The reduced graph G' might contain a vertex of degree 0, making the inductive hypothesis $P(n)$ inapplicable! We are stuck—and properly so, since the claim is false!

Problem 3.

In this problem, we examine an interesting connection between propositional logic and 3-colorings of certain special graphs. Consider the graph in Figure 1. We designate the vertices connected in the triangle on the left as color-vertices; since they form a triangle, they are forced to have different colors in any coloring of the graph. The colors assigned to the color-vertices will be called T, F and N. The dotted lines indicate edges to the color-vertex N.

(a) Prove that there exists a 3-coloring of the graph iff neither P nor Q are colored N.

Solution. (left-to-right case): If there is a valid 3-coloring (or more generally, any valid coloring) then the dotted edges ensure that P and Q are not colored as N in that coloring.

(right-to-left case): If neither P nor Q are colored N, then both P and Q have to be colored T or F.

The diagram is symmetric in P and Q, so there are really only three cases to consider: P and Q are both colored T, both colored F, or P and Q are colored differently. If P and Q are colored differently, we can verify that this leads to only one possible 3-coloring where the vertex labelled $(P OR Q)$ is colored T.

![Figure 1](image-url)
If P and Q have the same color, then one of the vertices directly above must be colored with N and the other with the opposite color as P and Q. This forces $(P \lor Q)$ to be colored with the same color as P and Q. There is then a unique coloring of the bottom vertex, and the middle vertex on the arc on the left that can complete a 3-coloring.

Therefore, in each case where neither P nor Q are colored N, there exists a valid 3-coloring.

(b) Argue that the graph in Figure 1 acts like a two-input OR-gate: a valid 3-coloring of the graph has the vertex labelled $(P \lor Q)$ colored T iff at least one of the vertices labelled P and Q are colored T.

Solution. We can think of P and Q as “input” vertices and $(P \lor Q)$ as the “output” vertex. In the argument above, we concluded that when P and Q have different colors, $(P \lor Q)$ is colored T. On the other hand, when P and Q have the same color, then $(P \lor Q)$ also shares this color. Therefore, the color of $P \lor Q$ is always the Boolean OR of the colors assigned to P and Q.

(c) Changing the endpoint of one edge in Figure 1 will turn it into a two-input AND simulator. Explain.

Solution. Change the endpoint of the horizontal edge incident to the T-vertex to be incident to the F vertex. As before, when P and Q have the same color, the “$(P \lor Q)$”-vertex must to be colored with the same color. Likewise, if P and Q are colored differently, then the bottommost vertex must be colored N which forces the leftmost black vertex, which is now incident to the F vertex, to be colored T, forcing the “$(P \lor Q)$”-vertex to be colored F.

Hence, with this edge change, the “$(P \lor Q)$”-vertex is now really a $(P \land Q)$-vertex.

Problem 4.
The n-dimensional hypercube, H_n, is a graph whose vertices are the binary strings of length n. Two vertices are adjacent if and only if they differ in exactly 1 bit. For example, in H_3, vertices 111 and 011 are adjacent because they differ only in the first bit, while vertices 101 and 011 are not adjacent because they differ at both the first and second bits.

(a) Verify that for any two vertices $x \neq y$ of H_3, there are 3 paths from x to y in H_3, such that, besides x and y, no two of those paths have a vertex in common.

Solution. Define the distance between two binary strings of length n to be the number of positions at which they differ (this is known as the Hamming distance between the strings).

To show that there are 3 paths between any two distance 1 strings, we can, by symmetry, just consider paths between the vertices 000 and 001.

Paths from 000 to 001:

- 000, 001
- 000, 010, 011, 001
- 000, 100, 101, 001

Likewise for distance 2, it is enough to find paths between 000 and 011:
Finally, for distance 3 from 000 to 111:

\[
\begin{align*}
000,010,011 \\
000,001,011 \\
000,100,110,111,011
\end{align*}
\]

(b) Conclude that the connectivity of \(H_3 \) is 3.

Solution. Since there are three paths from \(x \) to \(y \) in \(H_3 \) that share no edges with one another, removing any two edges will leave one of these paths intact, so \(x \) and \(y \) remain connected. So removing two edges from \(H_3 \) does not disconnect it.

On the other hand, removing all 3 edges incident to any vertex disconnects that vertex. Thus the minimum number of edges necessary to disconnect \(H_3 \) is 3.

(c) Try extending your reasoning to \(H_4 \). (In fact, the connectivity of \(H_n \) is \(n \) for all \(n \geq 1 \). A proof appears in the problem solution.)

Solution. Two walks in a graph are said to **cross** when they have a vertex in common other than their endpoints. A set of walks in a graph **don’t cross** when no two walks in the set cross. A graph is \(k \)-routed if between every pair of distinct vertices in the graph there is a set of \(k \) paths that don’t cross.

We’ll show that

Lemma.

\[H_n \text{ is } n\text{-routed for all } n \geq 1. \]

Since \(H_n \) can be disconnected by deleting the \(n \) edges incident to any vertex, this implies that \(H_n \) has connectivity \(n \).

Proof. The proof is by induction on \(n \) with induction hypothesis,

\[P(n) ::= H_n \text{ is } n\text{-routed.} \]

Base case \([n = 1]\): Since \(H_1 \) consists of two vertices connected by an edge, \(P(1) \) is immediate.

Base case \([n = 2]\): \(H_2 \) is a square. Vertices on opposite corners are connected by two length 2 paths that don’t cross, and adjacent vertices are connected by a length 1 path and a length 3 path.

Inductive step: We prove \(P(n + 1) \) for \(n \geq 2 \) by letting \(v \) and \(w \) be two vertices of \(H_{n+1} \) and describing \(n + 1 \) paths between them that don’t cross.

Let \(R \) be any positive length path in \(H_n \), say

\[R = r_0, r_1, \ldots, r_k. \]
For $b \in \{0, 1\}$ define the H_{n+1} path

$$bR := br_0, br_1, \ldots, br_k.$$

Case 1: The distance from v to w is $d \leq n$. In this case, the $(n + 1)$-bit strings v and w agree in one or more positions. By symmetry, we can assume without loss of generality that v and w both start with 0. That is $v = 0v'$ and $w = 0w'$ for some n-bit strings v', w'. Now by induction, there are paths, Q_i for $1 \leq i \leq n$, that don’t cross going between v' and w' in H_n.

Define the first n paths in H_{n+1} between v and w to be

$$\pi_i := 0Q_i$$

for $1 \leq i \leq n$. These paths don’t cross since the Q_i’s don’t cross.

Then define the $n + 1$st path

$$\pi_{n+1} := v, 1\pi_{v',w'}, w$$

where $\pi_{v',w'}$ is any path from v' to w' in H_n. Then π_{n+1} does not cross any of the other paths since $1\pi_{v',w'}$ is vertex disjoint from $0Q_i$ for $1 \leq i \leq n$.

This proves that $P(n + 1)$ holds in this case.

Case 2: The distance from v to w is $n + 1$. By symmetry, we can assume without loss of generality that $v = 0^{n+1}$ and $w = 1^{n+1}$.

Now by induction, there are n paths from 0^n to 1^n in H_n that don’t cross in H_n. Removing the shared first vertex, 0^n, of these paths yields paths R_1, R_2, \ldots, R_n. Now the R_i’s are vertex disjoint except for their common endpoint, 1^n. Let s_i be the start vertex of R_i for $1 \leq i \leq n$.

We now define $n + 1$ paths in H_{n+1} from 0^{n+1} to 1^{n+1} that don’t cross.

The first of these paths will be

$$\pi_1 := 0^{n+1}, 10^n, 1R_1.$$

For $2 \leq i \leq n$, the ith of these paths will be

$$\pi_i := 0^{n+1}, 0s_i, 1R_i.$$

These paths don’t cross because

- the paths $1R_i$ for $1 \leq i \leq n$ are vertex disjoint except for their common endpoint, 1^{n+1}, because the R_i’s are vertex disjoint except for their common endpoint, 1^n,

- a vertex $0s_i$ does not appear on π_j for any for $j \neq i$ because the $s_i \neq s_j$ for $j \neq i$, and the other vertices on the π_j’s start with 1,

- the vertex 10^n appears only on π_1. This follows because if it appeared on π_i for $i \neq 1$ it must appear on $1R_i$. That would imply that 0^n appears on R_i, contradicting the fact that the original path 0^n, R_i in H_n is simple.

Finally, the $n + 1$s path will be

$$\pi_{n+1} := 0^{n+1}, 0R_1, 1^{n+1}.$$

Note that, since all but the final vertex on π_{n+1} start with 0, the only vertices besides the endpoints that π_{n+1} could share with another path would be $0s_i$ for $2 \leq i \leq n$. But none of these appear on π_{n+1} because, except for their shared endpoint, R_1 is vertex disjoint from all the other R_i’s.

This proves that $P(n + 1)$ holds in case 2, and therefore holds in all cases, which completes the proof by induction.

\blacksquare
Note that this proof implicitly defines a recursive procedure that, for any two vertices in H_n, finds between the two vertices n paths of length at most $n + 1$ that don’t cross.

The proof rests on the fact that $H_{n+1} = H_1 \boxtimes H_n$ where \boxtimes is a Cartesian product of graphs.

Definition. The *Cartesian product* $G \boxtimes H$ of simple graphs G and H has

\[
V(G \boxtimes H) := V(G) \times V(H),
\]

\[
E(G \boxtimes H) := \{(g_1, h) - (g_2, h) \mid (g_1 - g_2) \in E(G) \} \cup \\
\{(g, h_1) - (g, h_2) \mid (h_1 - h_2) \in E(H)\}.
\]

The n-connectness of H_n then follows immediately from a known result of graph theory that is both simpler and more general:

Theorem (Cartesian routedness). *If G is m-routed and H is n-routed, then $G \boxtimes H$ is $(m + n)$-routed.*

We expect that the proof above for H_n can be extended to prove this Cartesian routedness Theorem.