Problem Set 8

Due: April 10

Reading: Sections 11.7–11.10, 11.6

Problem 1.

Prove Corollary 11.10.12: If all edges in a finite weighted graph have distinct weights, then the graph has a *unique* MST.

Hint: Suppose M and N were different MST's of the same graph. Let e be the smallest edge in one and not the other, say $e \in M - N$, and observe that N + e must have a cycle.

Problem 2.

A basic example of a simple graph with chromatic number n is the complete graph on n vertices, that is $\chi(K_n) = n$. This implies that any graph with K_n as a subgraph must have chromatic number at least n. It's a common misconception to think that, conversely, graphs with high chromatic number must contain a large complete subgraph. In this problem we exhibit a simple example countering this misconception, namely a graph with chromatic number four that contains no *triangle*—length three cycle—and hence no subgraph isomorphic to K_n for $n \ge 3$. Namely, let G be the 11-vertex graph of Figure 1. The reader can verify that G is triangle-free.

- (a) Show that G is 4-colorable.
- (b) Prove that G can't be colored with 3 colors.

Figure 1 Graph *G* with no triangles and $\chi(G) = 4$.

Problem 3.

The preferences among 4 boys and 4 girls are partially specified in the following table:

^{2015,} Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license.

B1:	G1	G2	_	_
B2:	G2	G1	_	_
B3:	_	_	G4	G3
B4:	_	_	G3	G4
G1:	B2	B1	_	_
G2:	B1	B2	_	_
G3:	_	_	B3	B4
G4:	_	—	B4	B3

(a) Verify that

(*B*1, *G*1), (*B*2, *G*2), (*B*3, *G*3), (*B*4, *G*4)

will be a stable matching whatever the unspecified preferences may be.

(b) Explain why the stable matching above is neither boy-optimal nor boy-pessimal and so will not be an outcome of the Mating Ritual.

(c) Describe how to define a set of marriage preferences among *n* boys and *n* girls which have at least $2^{n/2}$ stable assignments.

Hint: Arrange the boys into a list of n/2 pairs, and likewise arrange the girls into a list of n/2 pairs of girls. Choose preferences so that the *k*th pair of boys ranks the *k*th pair of girls just below the previous pairs of girls, and likewise for the *k*th pair of girls. Within the *k*th pairs, make sure each boy's first choice girl in the pair prefers the other boy in the pair.